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CHAPTER

Numerical Computations

Numerical methods are methods for solving problems on computers by numerical calculations, often giving
a table of numbers and/or graphical representations or figures. Numerical methods tend to emphasize the
implementation of algorithms. The aim of numerical methods is therefore to provide systematic methods for
solving problems in a numerical form. The process of solving problems generally involves starting from an
initial data, using high precision digital computers, following the steps in the algorithms, and finally obtaining
the results. Often the numerical data and the methods used are approximate ones. Hence, the error in a
computed result may be caused by the errors in the data, or the errors in the method or both.

In this chapter, we will describe Taylor’s theorem, a few basic ideas and concepts regarding numerical
computations, number representation, including binary, decimal, and hexadecimal numbers, errors
considerations, absolute and relative errors, inherent errors, round-off errors and truncation errors, error
estimation, general error formulae including approximation of a function, stability and condition, uncertainty
in data, linear convergence, quadratic convergence, and Aitken’s acceleration formulae.

1.1 TAYLOR’S THEOREM

Taylor’s theorem allows us to represent, exactly, and fairly general functions in terms of polynomials with a
known, specified, and boundable error. Taylor’s theorem is stated as follows:

Let f(x) have n + 1 continuous derivatives on [a, b] for some n = 0, and let x, xy € [a, b]. Then

f&) = pux) +Rn(x) 1.1

for P, (x)= Z(x ) Y 12)
k=0

and R, (x)= L _f (x=0)" f"' (1) dt (13)
n!xU

Also, there exists a point &,, between x and x, such that

(x— xo)

R, (0= (n+1)!

—— "€ (14)
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where R,(x) is the remainder. Taylor’s series is an associated formula of Taylor’s theorem.

Taylor’s series gives us a means to predict a function value at one point in terms of the function value
and its derivatives at another point.

Taylor’s series expansion is defined by

fx,)= f('xi)+f,('xi)('xi+l -x)+ ! 2(')(1)( Xiv1 x)
+ f',’(Xi)(xi+l _X,-)3 +oot fﬂ(xj)( Xiv1 _x) +R (15)
3! n!

We note that Eq. (1.5) represents an infinite series. The remainder term R, is included to account for all terms
from (n + 1) to infinity:

Y AR(S)

_ n+l
o (1) (X —X;) (1.6)

where the subscript n connotes that this is the remainder for the n™ order approximation and & is a value
of x that lies somewhere between x; and x; , ;.

We can rewrite the Taylor’s series in Eq. (1.6) by defining a step size & = x;,| — x; as

” " (n)
SO ) )

FGa) = f)+ f/(x)h+ ———h"+R, (L.7)
2! 3! n!
where the remainder term R, is given by
(n+1)
— f (&) hn+l (1 8)
" (n+ 1) )

The estimation of function at a point » which is fairly close to a is desired, then the Taylor’s series is written

as an infinite series:

b-a)’ b-a)"

( ) f”(a) 4o 4 gf (n) (a) 4 o (1_9)
2! n!

If b is very close to a, then only a few terms can give good estimation. The Taylor’s series expansion for e*,

sin x and cos x are given below:

f)=fl@+®b-a)f'(a)+

1 1 1 1 o 1
e —1+x+—x =2 et — 2"+ —— """ =Y —x* + R (x
SYREEY PY R Z%k' () (1.10)
_ 1\ _ 1\l
sinx:x—lx3+ix5+---+ 1) x4 (1) X" cosEx
3! 5! 2n+1! (2n+3)!
D" 2k
+R, (x
;:1(2k+1)' L (x) .11

1 _ln _1 n+l
cosle——x2+—x4+-~-+( ) X"+ 1) X
207 4 2n)! (2n+2)!

cos&x



// Numerical Computations // 3

n (_l)k
= g 0! x* +R,(x) (1.12)

The error in Taylor’s series when the series is terminated after the term containing (x — a)" will not
exceed

[lx—al]"”

" (n+1)!

| oo (1.13)

where max corresponds to the maximum magnitude of the derivative in the interval a to x. When the Taylor’s
series is truncated after n terms, then f (x) will be accurate to O(x — a)".

Example E1.1
Use Taylor series expansion to approximate f (x) = cos x at x;,; = /3 with n = 0 to 6 on the basis of the

T T
value of f(x) and its derivatives at x; = /4 which implies that & = E /12,

Solution:

The zero approximation is given by

A

f(xm)_f(x[)"'f/(xi)(xm _x[)
f(m/3)2 Cosg =0.70710678; cos(gj =0.5

The % relative error is

c = 0.5-0.70710678 (100)= 4149

’ 05
f’(x)=—sinx
1 Z = cos| Z | =sin| Z|| Z | = 0.52198666
3 4 4\ 12
€= —4.4%

f”(x)z—cosx

f(ﬂj = cos(E) - sin(zj(ij —M(Ej = 0.49775449
3 4 4)\12 S

with €,=0.449%.
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Table E1.1 shows the Taylor series approximation for n = 0 to 6.

Table E1.1

Ordern | f(x) F(1/3) e,
cosx | 0.70710678 | —41.4
—sinx | 0.52198666 | —4.4
—cos x | 0.49775449 | 0.449
sinx | 0.49986915 | 2.62 x 107
cosx | 0.50000755 | -1.51 x 107
—sinx | 0.50000030 | —6.08 x 107
—cos X | 0.49999999 | 2.40 x 107

1.2 NUMBER REPRESENTATION

A base-b number is made up of individual digits. In positional numbering system, the position of a digit in
the number determine that digit’s contribution to the total value of the number.

NNk W —=O

For decimal numbers, the base (radix) is 10. Hence (a, a,_; ... a; a; ag), = a, b" + a,_; b" ' + -+ +
a,b? + a;b + ay . a, contributes to the number’s magnitude and is called the most significant digit (MSD).
Similarly, the right most digit, a,, contributes the least and is known as the least significant digit (LSD).
Conversion of base-b fractions to base-10 is done by (0.a; as ... a,), = a;b™' + ayb=2 + --- + a,,b~". This
is known as the expansion method.

There are two binary digits (bits) in the binary number system: zero and one. The left most bit is called
the most significant bit (MSB) and the right most bit is the least significant bit (LSB). The rules of bit
additions are: 0+ 0=0;0+1=1; 1 +0=1; 1 + 1 =0 carry 1. The first ten digits 1, 2, 3, ..., 10 in base 10 and
their representation in base-2 are shown in Fig.1.1.

Base 10 R 2Bzase 221 20
1 010 |0 |1
2 010|110
3 010 |1 |1
4 0111010
5 0|1 ]0 |1
6 0|1 |11]0
7 01 |1 |1
8 1 {0]0 (O
9 110 |0 |1
10 1 ]0]1 10

Fig. 1.1: Representation of numbers in decimal and binary forms

Most computer languages use floating-point arithmetic. Every number is represented using a (fixed, finite)
number of binary digits, called bits. Each binary digit is referred to as a bit. In this method, the computer
representation a number in the following form:

Number = 6 mb'~? (1.14)
where o= sign of the number (£), denoted by a single bit.

m = mantissa or a fraction (a value which lies between 0.1 and 1).
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b = the base of the internal number system (b = 2 for binary, b = 10 for decimal or b = 16 for
hexadecimal computers).

t = shifted exponent (the value that is actually stored).

p = shift required to recover the actual exponent. Shifting in the exponent is normally done to

avoid the need for a sign bit in the exponent itself.

The number is then stored by storing only the values of &, m and ¢. The normal way to represent and store
numbers is to use a binary or base 2 number system which contains the following two digits.

binary digits = {0 1} (1.15)
For positive integers the binary form is

d2" + d,_ 2" + o+ d 21 + dy2° (1.16)
while for positive numbers less than one it is

d 27" +d 22+ d 3273 + - (1.17)

with all binary digits d; either O or 1. Such representations are unique.

Conversion between base 10 and base 2 is performed automatically by programming languages. Thus,
conversion of an n-bit binary integer b = b,_;...b to its decimal equivalent x is done as a sum of n powers
of 2:

n—1
x=Y b2 (1.18)
k=0

A positive decimal integer x, in the range 0 to 2" — 1 is converted to its n-bit binary equivalent b = b,_; ... by
by conducting a sequence of n divisions by decreasing powers of 2. In other words, the digits of the binary
numbers are computed starting with the most significant bit, b,_;, and ending with the least significant, b,,.

Noting that the hexadecimal numbers have a larger base or radix than decimal numbers, the first six
letters of the alphabet are used to augment the decimal digits as follows:

Hexadecimal digits = {0, 1, 2, 3,4,5,6,7,8,9,A,B, C,D, E, F} (1.19)

The conversion between binary, decimal and hexadecimal numbers can be accomplished using Table 1.1.

Table 1.1: Binary, Decimal and Hexadecimal Numbers

Binary | Decimal | Hexadecimal | Binary | Decimal | Hexadecimal
0000 00 0 1000 08 8
0001 01 1 1001 09 9
0010 02 2 1010 10 A
0011 03 3 1011 11 B
0100 04 4 1100 12 C
0101 05 5 1101 13 D
0110 06 6 1110 14 E
0111 07 7 1111 15 F

Example E1.2

Determine the decimal values of the following numbers:
(@) x=(10010110),
by x=(TT7)y
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Solution:

;
(@ x=Y b2" using equation (1.18)

k=0
=21 422424427
=2+4+16+ 128 =150
by x=(T7T)
2
x= .58 =78 +7(8)" + 7(8)2 =7 + 56 + 448 = 511
k=0
Example E1.3
Convert (1011), to base-10.

Solution:
MRP+O0) 2+ @' +1=11

The remainder method is used to convert base-10 numbers to base-b numbers. Converting a base-10
fraction to base-b requires multiplication of the base-10 fraction and subsequent fractional parts by the base.
The base-b fraction is formed from the integer parts of the products taken into same order in which they
were determined.

The octal (base-8) numbering system is one of the alternatives to working with long binary numbers.
Only the digits O to 7 are employed. For instance,

T7+1=6+2=5+3=(10)
T+2=6+3=5+4=(11)y
T+3=6+4=5+5=(12)

Example E1.4

Perform the following operations:
(@ (Mg +(0)s
(b) Convert (0.14);, to base-8
(¢) Convert (27.52)g to base-10.

Solution:
(a) The sum of 7 and 6 in base-10 is 13. This is greater than 8. Using the remainder method, we have
13/8=1 remainder 5
1/8=0 remainder 1
The answer is (15)g.
) 014x8=1.12

0.12 x 8 =0.96
0.96 x 8 =7.68
0.68 x8 =544

0.44 x 8 = etc.
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The answer is (0.1075....)g which is obtained from the integer parts of the products above.
5 2

© @QO'+DE®+BG)®) T+ @®)?2=16+7+ §+a= (23.656)1
The hexadecimal (base-16) system is a shorthand way of representing the value of four binary digits at a
time.
Example E1.5

(a) Convert (1475),y to base-16.

(b) Convert (0.8); to base-16.
Solution:

(a) Using the remainder method

1475
16

=92 remainder 3
% = 5 remainder 12
16

i = Qremainder 5
16

Now, (12)19 is (C);6 or (hex C).
Hence, the answer is (5C3)16.
() 08x16=128
08x16=12.8
0.8 x 16 = etc.
Since (12);9 = (C)16, wWe have the answer as (0.CCCCC...)1.

Example E1.6
(a) Convert (5431)g to base-2.
(b) Convert (1011111101111001), to base-16.

Solution:
(a) First convert each octal digit to binary digits.
(5) = (101),
(4)s = (100)
(3)s = (011),
(1)g = (001),
Hence, the answer is (101100011001),.

(b) Grouping the bits into fours starting at right-hand-bit, we have 1011 1111 0111 and 1001. Converting
these groups into their hexadecimal equivalents, we get

(1011), = (B)ss
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(1111), = (F)6

(O111) = (T)16

(1001), = (916

Therefore, the answer is (BF79)4.
Example E1.7

(a) Convert the following base-2 numbers to base-10: 1011001 and 110.00101
(b) Convert the following base-8 numbers to base 10: 71563 and 3.14.

Solution:
(a)  (1011001),

Ax294+O0x2)+(Ix2H+ (A x2H+ 0 %22+ 0 x2)+(1x29

1(64) + 0(32) + 1(16) + 1(8) + 0(4) + 0(2) + 1(1) = 89
Ax2)+(Ax2H+O0x2)+Ox2H+O0Ox2D)+(Ax2H)+Ox2H+ (A x29D)
14) + 1(2) + 0(1) + 0(0.5) + 0(0.25) + 1(0.125) + 0(0.0625) + .03125) = 6.15625

(7% 8%+ (1x8)+(5x8) + (6x8)+ (3 x 20

7(4096) + 1(512) + 5(64) + 6(8) + 3(1) = 29,555

(3x 8% + (3 x87) + (4 x 82) = 3(1) + 1(0.125) + 4(0.015625) = 3.1875

(110.00101),

(b) (71563)g

(3.14)

1.3 ERROR CONSIDERATIONS

Sources of Errors: When a computational procedure is involved in solving a scientific-mathematical problem,
errors often will be involved in the process. A rough classification of the kinds of original errors that might
occur is as follows:

Modelling Errors: Mathematical modelling is a process when mathematical equations are used to
represent a physical system. This modeling introduces errors and are called modelling errors.

Blunders and Mistakes: Blunders occur at any stage of the mathematical modeling process and consist
to all other components of error. Blunders can be avoided by sound knowledge of fundamental principles
and with taking proper care in approach and design to a solution. Mistakes are due to the programming
errors.

Machine Representation and Arithmetic Errors: These errors are inevitable when using floating-point
arithmetic when using computers or calculators. Examples are rounding and chopping errors.

Mathematical Approximation Errors: This error is also known as a truncation error or discretisation
error. These errors arise when an approximate formulation is made to a problem that otherwise cannot be
solved exactly.

Accuracy and Precision: Accuracy refers to how closely a computed or measured value agrees with
the true value. Precision refers to how closely individual computed or measured values agree with each
other. Inaccuracy (also known as bias) is the systematic deviation from the truth. Imprecision (uncertainty)
refers to the magnitude of the scatter. These concepts are illustrated graphically using an analogy from target
practice as shown in Fig.1.2.

Figure 1.2 Illustrating the concepts of accuracy and precision from marksmanship example (@) inaccurate
and imprecise, (b) accurate and imprecise, (c¢) inaccurate and precise and (d) accurate and precise



// Numerical Computations // 9

Increasing accuracy

v

Increasing precision

v (©) (d)

Fig. 1.2: Concepts of accuracy and precisions

Errors are introduced by the computational process itself. Computers perform mathematical operations with
only a finite number of digits. If the number x, is an approximation to the exact result x,, then the difference
X, — X, 1s called error. Hence

Exact value = approximate value + error
In numerical computations, we come across the following types of errors:

(a) Absolute and relative errors
(b) Inherent errors

(¢) Round-off errors

(d) Truncation errors

1.3.1 Absolute and Relative Errors

If X is the exact or true value of a quantity and X, is its approximate value, then IX; — Xyl is called the
absolute error E,. Therefore absolute error

E, =Xz - X, (1.20)

and relative error is defined by

_|Xe=Xa
E, = X, 121
provided X # 0 or X is not too close to zero. The percentage relative error is
Xg—Xa
Ep =100E, =100|—— (1.22)
E
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Significant digits: The concept of a significant figure, or digit, has been developed to formally define the
reliability of a numerical value. The significant digits of a number are those that can be used with confidence.

If X is the exact or true value and X, is an approximation to X, then X, is said to approximate Xg to
t significant digits if ¢ is the largest non-negative integer for which

XE_XA -t
——2<5x%10
1 X, | (123)

Example E1.8

If X = e (base of the natural algorithm = 2.7182818) is approximated by X, = 2.71828, what is the significant
number of digits to which X, approximates Xz?

Solution:

Xp=Xy _e-271828 his <5x 106
[ Xp | e

Hence X, approximates X to 6 significant digits.

Example E1.9

Let the exact or true value = 20/3 and the approximate value = 6.666.
The absolute error is 0.000666... = 2/3000.

The relative error is (2/3000)/ (20/3) = 1/10000.

The number of significant digits is 4.

1.3.2 Inherent Errors

Inherent errors are the errors that pre exist in the problem statement itself before its solution is obtained.
Inherent errors exist because the data being approximate or due to the limitations of the calculations using
digital computers. Inherent errors cannot be completely eliminated but can be minimised if we select better
data or by employing high precision computer computations.

1.3.3 Round-off Errors

Round-off error is due to the inaccuracies that arise due to a finite number of digits of precision used to
represent numbers. All computers represent numbers, except for integer and some fractions, with imprecision.
Digital computers use floating-point numbers of fixed word length. This type of representation will not express
the exact or true values correctly. Error introduced by the omission of significant figures due to computer
imperfection is called the round-off error.

Round-off errors are avoidable in most of the computations. When n digits are used to represent a real
number, then one method is keep the first n digits and chop off all remaining digits. Another method is to
round to the n digit by examining the values of the remaining digits. The two steps involved in rounding
to n digits are as follows:

b
1. Add sgn(x) ) to digit n + 1 of x.

2. Chop x to n digits.
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where x is the nonzero real number, b is the base and sgn(x) = x/Ixl denotes the sign of x with sgn (0) = 0.
Thus, the effect of the add and chop method of rounding is to round digit » up (away from zero) if the first
digit to be chopped, digit n + 1, is greater than equal to b/2, otherwise digit # is left as is. Errors which result
from this process of chopping or rounding method are known as round-off errors.

Rounding to k decimal places

To round x, a positive decimal number, to k decimal places, we chop x + 0.5 % 107 after k" decimal digit.
Similarly, to a round a negative number, we round its absolute value and then restore the sign. Table 1.2
illustrates the rounding the numbers 234.0065792 and —234.00654983 to k decimal digits.

Table 1.2: Rounding numbers to k decimal digits

k | 234.0065792 | —234.00654983

234 -234
234.0 -234.0
234.01 -234.01
234.007 —234.007
234.0065 —234.0065

234.00658 —234.00655
234.006579 | —234.006550
234.0065792 | —234.0065498
234.0065792 | —234.00654983

0NN AW~ O

Accurate to k decimal places

1
When we state that ¥ approximates y to k decimal places provided ly — Y| < 2 x 107* and if both y and Y are

rounded to k decimal places, then the k™ decimals in the rounded versions differ by no more than one unit.
Consider for instance, the two numbers y = 57.34 and Y = 57.387 differ by ly — Y1 = 0.047 < 0.5 x 10~ = 0.05
hence Y approximates y to 1 decimal place. Rounding y to Y to the k = 1 decimal place, we find y, = 57.3 and
Y, = 57.4, respectively. Therefore, y, and Y, differ in the first decimal place by no more than one unit. Also,
when Y approximates y to k decimal places, then these two numbers are said to agree to k£ decimal places. It
should be noted here that these two numbers are not necessarily the same when rounded to k decimal places.

The most significant figure in a decimal number is the leftmost nonzero digit and the least significant
figure is the rightmost digit. Significant figures are all the digits that lie in between the most significant and
least significant figures. However, it should be noted here that zeros on the left of the first significant figure are
not treated as significant digits. For instance, in the number Y = 0.0078560, the first significant digit is 7 and
the rightmost zero is the fifth significant digit. Table 1.3 shows the results of rounding Y to k significant figure.

Table 1.3: Significant figures

k significant digits | Y = 0.0078560
1 0.008
2 0.0078
3 0.00786
4 0.007856
5 0.0078560

Accurate to k significant figures

1
It |x—X|<5><10*k|x|



12 // Numerical Methods //

1 1
or x—axlo_kIxI<X<x+E><10_kaI

then we say that the floating-point number X approximates x to k significant figures. Table 1.4 shows k, the
intervals [x — d (k), x + d (k)], where d(k) = 3 x 10" k| xl, interval rounded, x rounded for x = 1t = 3.141592654.
The last column in Table 1.3 shows the value of 7 rounded to k significant digits.

Table 1.4: Approximation of @ to k significant figures

k [x — dI(rlit)t?r;/a-l: (0] Interval rounded x rounded
1] [2.984513021, 3.298672287] | [3.0, 3.3] 3.0

2 | [3.125884691, 3.157300617] | [3.1, 3.2] 3.1

3 | [3.140021858, 3.143163450] | [3.14, 3.14] 3.14

4 | [3.141435574, 3.141749734] | [3.141, 3.142] 3.142

5| [3.141576946, 3.141608362] | [3.1416, 3.1416] 3.1416

6 | [3.141591083, 3.141594225] | [3.14159, 3.14459] 3.14159

7 | [3.141592497, 3.141592811] | [3.141592, 3.141593] 3.141593
8 | [3.141592638, 3.141592670] | [3.1415926, 3.1415927] | 3.1415927

Example E1.10
Given the number 7 is approximated using n = 5 decimal digits.
(a) Determine the relative error due to chopping and express it as a per cent.
(b) Determine the relative error due to rounding and express it as a per cent.
Solution:

(a) The relative error due to chopping is given by

. 3.1415-n
E (chopping) = —x - 2.949 % 107 or 0.002949%
(b) The relative error due to rounding is given by
) 3.1416-m
E,(rounding) = T =2.338 x 107 or 0.0002338%.
Example E1.11
If the number 7 = 4 tan~!(1) is approximated using 5 decimal digits, find the percentage relative error due to,
(a) chopping (b) rounding.
Solution:

(a) Percentage relative error due to chopping

=(—3'1415_”j100 = (— 2.949><10*5)100 or — 0.002949%.
T

(b) Percentage relative error due to rounding

_(3.1416—71

JIOO - (2.338 x 10‘6)100 = 0.00023389%
T
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Example E1.12

Use Taylor series expansions (zero through fourth order) to predict f(2) for f (x) = In(x) with a base point at
x = 1. Determine the true percentage relative error for each approximation.

Solution:
The true value of In (2) = 0.693147...
Zero order:
f@=5M=0
E = ‘M‘IOO% =100%
0.693147

First order:

1

== fm=1
X

F@ =0+ 1()=1

_‘0.693147—1
] ikt

100% = 44.27%
0.693147

Second order:

1
f// (x) — __2 ’” (1) = _1
X

12
f@=1-1-=05

10.693147-0.5
! 0.693147

‘100% =27.87%
Third order:

2
1 )(x)=7f”’ (1)=2

3
f(2)=05+ 2% =(.833333

E = |0'693é4679; ?5;33331100% - 2022%

Fourth order:
£ () = - =f"(1) =6

4
f(2)=0.833333 - 6;—4 =0.583333

- 0693147 -0.583333 | o <o
0693147 |
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The above results show that the series is converging at a slow rate. A smaller step size would be required to
obtain more rapid convergence.
Example E1.13
Given two numbers a = 8.8909 x 103 and b = 8.887 x 103. Calculate the difference between the two numbers
(a — b) using decimal floating point approximation (scientific notation) with three significant digits in the
mantissa by (@) chopping (b) rounding.
Solution:
(a) In chopping, when three significant digits are in the mantissa, then
a=28.890 x 10% and b = 8.887 x 103
and a—b=28890x 103 - 8.887 x 10> = 0.003 x 103 = 3.
(b) In rounding, we have
a=28.890 x 10% and b = 8.887 x 103
and a—b=28890x 103 - 8.887 x 10> =0.004 x 103 =4.

The exact (true) difference between the numbers is 3.8 which shows that the rounding gives a value much
closer to the real answer.

1.3.4 Truncation Errors

Truncation errors are defined as those errors that result from using an approximation in place of an exact
mathematical procedure. Truncation error results from terminating after a finite number of terms known as
formula truncation error or simply truncation error.

Let a function f (x) is infinitely differentiable in an interval which includes the point x = a. Then the
Taylor series expansion of f(x) about x = a is given by

o (k) PN ;
=3 LY@ 6=

(1.24)
k=0 k!
where f® (a) denotes the k derivative of f(x) evaluated at x = a
A d¥fx
or A OE S i ) leo (125)

dx

If the series is truncated after n terms, then it is equivalent to approximating f (x) with a polynomial of degree
n—1.

n—1 (k) Lk
08 P IO

k=0

(1.26)

The error in approximating E,(x) is equal to the sum of the neglected higher order terms and is often called
the tail of the series. The tail is given by

E®2fw-f,00=

(x) A\
PAROCRIDN (E-‘L(‘x @) 1.27)

It is possible sometimes to place an upper bound on the x of E,(x) depending on the nature of function f (x).

If the maximum value of | f, (x) | over the interval [a, x] is known or can be estimated, then
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M, (x)2 max [
a<&<x

roe|] (128)

From Egs. (1.27) and (1.28), the worst bound on the size of the truncation error can be written as

M,(x)lx—al"

lE,(x)I<
n!

(1.29)

If h = x — a, then the truncation error E,(x) is said to be of order O (#"). In other words, as h—0, E, (x)—0
at the same rate as h".

Hence O =ch" lhl<<1 (1.30)
where ¢ is a non-zero constant.

The total numerical error is the summation of the truncation and round-off errors. The best way to
minimise round-off errors is to increase the number of significant figures of the computer. It should be noted
here that round-off error increases due to subtractive cancellation or due to an increase in the number of
computations in an analysis. The truncation error can be reduced by decreasing the step size. In general, the
truncation errors are decreased as the round-off errors are increased in numerical differentiation.

There exists no systematic and general approaches in evaluating numerical errors for all problems. In
most cases, error estimates are based on experience and judgment of the engineer or scientist.

Model errors relate to bias that can be ascribed to incomplete mathematical models. Errors also enter
into the analysis due to uncertainty in the physical data on which a model is based.

Example E1.14

Given the trigonometric function f (x) = sin x,
(a) expand f(x) about x = 0 using Taylor series
(b) truncate the series to n = 6 terms
(¢) find the relative error at x = /4 due to truncation in (b)

(d) determine the upper bound on the magnitude of the relative error at x = /4 and express it as a per
cent.

Solution:

(a) Using Eq. (1.23), the Taylor series expansion is given by

— f(k)(a)(x— a)k P
x) = = — ...
F Z;) k! 3t 50 7!
(b) Truncation of the Taylor series to n = 6 terms.
3 5
X x
fe()=x TR

(¢) The relative error at x = /4 due to truncation in (b) is given by

3
fo(m/4) —sin(n/4) Z—(’ﬂ /3!+(n/4)5 /51— sin(1/4)
sin(m/4) sin(/4)

=5.129 x 107 or 0.005129%

li@ =
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(d) Here f%x) = —sin x. From Eq. (1.28) using a = 0 and x = 1/4, we obtain
Mg(x) < sin (1t/4)
Now from Eq. (1.29), we have the upper bound on the truncation error given by

=2305x10* or 0.02305%

sin(m/4)(r/4)°
| E, I< —

1.3.5 Machine Epsilon
Digital computers are fixed-precision devices and the number of digits the device can manipulate depends
on its hardware configuration. Machine epsilon, € ; is the smallest positive number that the device can add
to 1 while recognising the sum as different than 1.

€ is determined computationally by finding the smallest positive € is for which 1 + € # 1. For instance,
if a particular computing device computes 1.000000001 for 1 + 10-° but 1 for 1 + 10719, then we conclude that
10710 < €,, < 1072 and the device in this case would be known as a 10 significant-digit device.

1.3.6 Error Propagation

Table 1.5 summaries the errors attributed to the round-off errors due to the limited number of digits using
fixed-precision devices. In order to illustrate these errors, we consider the following numbers: a = 237.6581,
b =238.2389, ¢ =0.014789, d = 137469 and A = 238.0, B = 238.2, C = 0.01480 and D = 1.375 x 10°.

Table 1.5: Possible types of round-off errors on a finite-precision computing device

S.No. Error Comments

1. |Negligible addition When two numbers of notable different magnitudes are added or
subtracted, then the result rounds to the largest number.

2. | Creeping round-off Repeated rounding to k significant digits will result in accumulation
of errors.

3. | Error magnification Occurs when an erroneous number is multiplied/divided by a number
of large/small magnitude.

4. | Subtractive cancellation |Due to the subtraction of two nearly equal numbers where the
difference lies in significant digits well beyond the devices capacity
to record it.

Tables 1.6 and 1.7 show the five exact arithmetic calculations (answers rounded-off to four significant digits)
and the same calculations performed on a device with four significant digits respectively.

Table 1.6: Exact arithmetic rounded to four significant digits

Rounded to four

S. No. Exact arithmetic Sriten CHis
1. a—c=237.6581 -0.014897 = 237.643203 237.6
2. b +d=237.8389 + 137476 = 1377103.8389 | 1.377 x 10°
3. bd = (237.8389)(137476) = 32697140.62 3.270 x 107
4, a/c =237.6581/0.014897 = 15953.42015 1.595 x 10*
5. a—b=237.6581 —237.8389 =-0.1808 -0.1808
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Table 1.7: Calculations with a device carrying four significant digits

S. No. Calculations
1. | A-C=238.0-0.01480 =238.0
2. |B+D=238.1+1375%x10°=1.377 % 10°
3. | BD=(238.1)(1.375 x 10°) = 3.274 x 10’
4. | A/C=238.0/0.01480 = 1.608 x 10"
5. | A-B=238.0-238.1=-0.1

14 ERROR ESTIMATION

Few computer methods are available to provide error estimates. These methods are briefly mentioned here.

1.

Double precision method: In this method, the problem is solved twice, once in single precision
and then in double precision. The estimate on the round-off error is then simply given by the
difference between the two results obtained.

Interval arithmetic method: Each number in this method is represented by two machine numbers
corresponding to the estimated maximum and minimum values. Two solutions are obtained at every
step corresponding to the maximum and minimum values. The true solution is assumed to lie in
about the centre of the range. The range here is the difference between the solutions corresponding
to the maximum and minimum values.

Significant digit arithmetic method: In this method, the digits lost due to the subtraction of two
nearly equal machine numbers are tracked. Only the significant digits in a number are kept and the
rest are rejected or ignored. In this way, all digits retained or kept are assumed to be significant.
The results obtained with this method are considered to be very conservative.

Statistical approach: This method starts with the assumption that the round-off error is independent.
A stochastic model for the propagation of round-off errors is then adapted in which the local errors
are considered as random variables. The local round-off errors are assumed to be either uniformly
or normally distributed between their extreme values. Using standard statistical analysis methods,
the standard deviation, the variance and the accumulated round-off error are estimated.
Backward error analysis: In this method, based on the result of a computation the possible range
of input data that could have produced it is determined. If the results found with this approach is
consistent with the input data, within the range of observational or round-off error, then there is
some confidence is placed on the result. If this does not happen, then a major source of error is
assumed to exist somewhere else, presumably within the algorithm itself.

Forward error analysis: The method can be illustrated by means of an example.

Suppose the value of A (B + C) is to be computed when a, b and ¢ are the approximations to A, B
and C respectively, and the respective error amounts are e, e; and e.

The true value is
AB+C)=(a+e) (b+ey+c+e3)=ab+ ac + error

where error = a (e, + e3) + bey + ce; + eje; + e1e3
Now assuming the uniform bound le;] < e and that error products can be ignored, we get

|error| < [2lal + Ib] + Icl] e

This procedure can be carried out for any algorithm. It is a tedious analysis. The resulting bounds
are generally very conservative.
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1.5 GENERAL ERROR FORMULA

1.5.1 Function Approximation

Consider the function
F =f(xy, X0, X3, .., Xp) (1.31)
where xi, x5, X3, ..., X, are variables.
Suppose Ax; represents error in each x;, so that the error in F is
F+AF =f(x; + Axy, x + Axy, .0y X, + Axy) (1.32)
Taylor’s series expansion of the right hand side of Eq. (1.31) gives

)
F+AF = f(xl,xz,...,xn)+za%Axi +O(Ax?) (1.33)
i=1 Ot
. Ax; .
If we assume the errors in x; as small, and — <1, so that the second and higher powers of Ax; can be
X
ignored, Eq. (1.33) gives '
o Of of of of
AF = Y —Ax; =—Aq+— Ay +--+—Ax
; o T gy Mty A 5, (1.34)

The relative error E, is then given by

Er e ﬁ :ai%+aiaﬁ+...+alai
foooxg f ox f ox, [
Replacing the function f (k) with its approximation ¢(#) and denoting the known error bound as u (#"*), where
n is a positive integer, we have
[ f(h) —f (W) < p IR for small h
Thus, ¢(h) approximates f (k) with order of approximation O(h") and we can write

J () = o(h) + O(h") (1.36)

(1.35)

Example E1.15
Determine the maximum relative error for the function

F =3x%% + 5y°22 — Tx*2> + 38
Forx=y=z=1and Ax =-0.05, Ay = 0.001 and Az = 0.02.

Solution:
F = 3x%y? + 5y22% — Tx*2%2 + 38
oF
— = 6xy% — 14 x7?
ox
oF
— = 6x%y + 10yz2
dy
oF

— = 10y’z - 14x?z
0z
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oF
—A
dy Y

= 1(6x2 — 14 x22) Axl + 1(6x2y + 10yz2)Al + [(10y%z — 14x22)Azl = 0.496

+

oF oF
- |—Ax —
(AF) oy, = ‘ax ‘+ % AZ‘

For x=y=2z=1 and Ax =-0.05, Ay = 0.001 and Az = 0.02, we have the maximum relative error is given by
Eq. (1.34).

AF 0.496
(AF)may _ 0496 =0.01272

(Er)max = F 39

1.5.2 Stability and Condition

A numerical computation is said to be numerically unstable if the uncertainty of the input values is grossly
magnified by numerical method employed.

Consider the first-order Taylor’s series of a function given by
f=f(@+fa) (x-a) 1.37)

The relative error of f(x) then becomes

J®-fla) _ f@)x—a)

= 1.38
F0) f(@ (13%)
The relative error of x becomes
x—a
(1.39)
a

A condition number is often defined as the ratio of the relative errors given by Egs. (1.38) and (1.39) as
Conditi b a /@) (1.40)

ondition number = .

f(a)

The condition number given by Eq. (1.40) indicates the extent to which an uncertainty in x is magnified by
f.
Condition number = 1 (function’s relative error = relative error in x)
Condition number > 1 (relative error is amplified)
Condition number < 1 (relative error is attenuated) (141)
Condition number > very large number (the function is ill-conditioned)

Example E1.16

Compute and interpret the condition number for
(@) f(x)=sinxfora=0.51xn
b)) f(x)y=tanxfora=1.7

Solution:

(a) The condition number is given by

af'(a)
fl@)

Condition number =
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for a =0.51m, f(a) = cos(0.51 1) = —0.03141, f(a) = sin(0.51 ) = 0.99951

a f'(a) (0.51m)(-0.03141)
f@ ~  (0.99951)

Since the condition number is < 1, from Eq. (1.41), we conclude that the relative error is attenuated.

Condition number = =-10.05035

®) fx)=tanx, f'(a)=-7.6966 fora=1.7
f'@) = l/cos®x, f'(a) = 1/cos®(1.7) = 60.2377

af'(a) 1.7(60.2377)

= =-13.305
f(a) ~7.6966

Condition number =

Thus, the function is ill-conditioned.

1.5.3 Uncertainty in Data or Noise

Uncertainty or error in the physical data based on which the computation model is based can introduce
errors in the analysis. This type of error is known as noise. The data can affect the accuracy of the numerical
computations performed. The errors can exhibit both inaccuracy and imprecision. If the input data has d
significant digits of accuracy, then the results obtained from the numerical computation should be reported
in d significant digits of accuracy. For instance if a = 5.358 and b = 0.06437 both have 4 significant digits of
accuracy, then although a — b = 5.29363, we should report the correct answer as a — b = 5.293.

The following observations can be made from the results in Tables 1.6 and 1.7.

(a) Negligible addition: Round-off error has crept into the fourth significant digit when we compare
a — ¢ (rounded) to A — C.
There is a difference in the fourth significant digit when b + d (rounded) are compared to B + D.

(b) Error magnification: Comparing a/c (rounded) to A/C we find a difference in the fourth significant
digit when bd (rounded) and BD are compared, the two answers differ substantially by —40000.

(¢) Creeping round-off: In the calculations of a — ¢, bd, a/c and b + d we find the result of working in
four significant digits as opposed to working “exactly” and then rounding would lead to a loss of
precision in the fourth significant digit. These calculations show the creeping round-off that is the
gradual loss of precision as repeated rounding errors accumulate.

(d) Subtractive calculations: Comparing a — b =—-0.1808 to A — B = — 0.1, we find significant error
introduced by working in fixed-precision arithmetic.

1.6 SEQUENCES

A sequence may converge to a limit in a linear fashion or in a nonlinear fashion. If the sequence is convergent,
then an iterative operation produces a sequence of better and better approximate solutions.

1.6.1 Linear Convergence

Here, we consider a sequence {x, xi, ..., X,,} generated by the iteration x;,; = g(x;). Table 1.8 lists k, x;, Ax;
(= X1 — x) and Axy,/Axy for g(x) = 1 + x/2 where the starting value is taken as 0.85.
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X
Table 1.8: Linear convergence of the iteration process for X, = 1+7k

Ax

k Xk AXy = Xpy1 — Xk Fkkﬂ
0 | 0.850000000 | 0.575 12
1 | 1.425000000 | 0.2875 172
2 | 1.712500000 | 0.14375 172
3 | 1.856250000 | 0.071875 1/2
4 | 1.928125000 | 0.0359375 172
5 | 1.964062500 | 0.01796875 172
6 | 1.982031250 | 0.008984375 172
71 1.991015625 | 0.004492188 172
8 | 1.995507813 | 0.002246094 172
9 | 1.997753906 | 0.001123047 1/2
10 | 1.998876953 | 0.000561523 172
11 | 1.999438477 | 0.000280762 172
12 ] 1.999719238 | 0.000140381 1/2

Notice that the ratios of successive increments in the last column of Table 1.8 are all exactly equal to 1/2
and the convergence of the sequence to x = 2 is linear. We call this sequence exactly linear since Ax; ,
= ¢y Ax; for all k> 0. Here ¢, = 1/2.

The sequence {x;} is said to converge linearly provided the ratio of increments Ax; ,/Ax; tends to a
constant ¢,, where 0 < | ¢/l < 1.

Linear Convergence Theorem

(a) X =g(X),sox=Xis a fixed point of the iteration x;,; = g(xy).

(b) g'(x) is continuous in a neighbourhood of the fixed point X. (142)
() g0 #0.

Therefore,

(a) {x;} converges to X linearly, with C, = g'(X) if 0 < Ig'(X)I < 1.

(b) {x} diverges linearly, with C, = g'(X) if Ig'(X)| > 1. (143)

(©
If 5o = 0 and s; = r, the general term in a sequence that converges exactly linearly with convergence
constant C is given by

{x;} converges or diverges slowly if g'(X) = # 1.

ck1-q
c-1

k=2
se=r)C"=r (1.44)
n=0

The increments are then given by As; = s3,; — s = rC¥. Appropriate conditions on C and r would then
guarantee convergence.

1.6.2 Quadratic Convergence

Consider a sequence {x, xi, ..., X,,} generated by the iteration

Xier1 = 8(X0),
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2.15x> +2.87

8 = oert 12

where
a function with fixed points.

Table 1.9 lists k, x;, Axg [= (e — x0)], and Axy, i/ (Axy)? for which the starting value is xy = 2. We observe
that the sequence converges very rapidly to the point x = 1. The last column of Table 1.9 shows that the
ratios Axg,/(Ax;) 2 are tending towards the constant C, = -0.4. This confirms the quadratic convergence
of the sequence {x;} to the point x = 1.

The sequence {x;} is said to converge quadratically provided the ratio of increments Axy,/(Ax;)?
tends to a constant C, # 0, # oo. If Ax, = Cq(Axk)2 for all k > 0, then the sequence is said to be exactly
quadratically convergent.

, L 2.15x% +2.87
Table 1.9: Quadratic convergence of the iteration process for x,,,=———"—"—
3.96x +1.2

k Xk AX = X1 — Xk Axi/(Axy)

0 | 2.000000000 | —0.7423245614 | —0.4276521490

1| 1.257675439 | —0.2356559011 | —0.3930757235

2 | 1.022019537 | —0.0218289508 | —0.3999390216

3 | 1.000190587 | —0.0001905722 | —0.3999999952

4 | 1.000000015 | —0.0000000145

5 | 1.000000000

Table 1.10: The structure of a sequence which is exactly quadratically convergent

k Sk ASi = Sii1 — S | Asii/ (ASk)2
010 r C
1| ’C C

2| C+r r'c? C

31 CP+°C+r °c’ C

4| T+ C+r°C+r r'ech C

50 °CE + 87+ CP+°C +r 2t

6 | P2CH +1CE + 87+ ' CP + °C 41

Quadratic Convergence Theorem

(a) X=g(X),sox=Xis a fixed point of the iteration x;,; = g(xz).

(b) g'"'(x) is continuous in a neighbourhood of the fixed point X.

© gX)=0.

That is, {x;} converges to X quadratically, with C, = —% g”"(X).

Table 1.10 lists Asy, As; = s, 1 — St and the ratios Asy .. /(Asy)? for a sequence whose convergence is
exactly quadratic, with convergence constant C, and with starting values s, = 0 and s; = r.




//  Numerical Computations // 23

1.6.3 Aitken’s Acceleration Formula

Quadratic convergence or any convergence of order higher than 2 is faster than the linear convergence.
Aitken’s acceleration process is used to accelerate a linearly converging sequence to a quadratically
converging sequence. Aitken’s process will give better results in an iterative numerical technique with fewer
number of iterative operations.

Let x be the limit of the sequence. That is,

lim x;, = x
k—o0

If {x;}, k=1 to o, is a linearly convergent sequence with limit x, and e, = x; — x, then

e
limM=}» and O<i<l (1.46)

- o
n— |ek|

where o, o< is the order of convergence and A is the asymptotic error constant. If oo = 1, convergence is
linear and if o = 2, convergence is quadratic.

Aitken’s process assumes that the limiting case in Eq. (1.46) occurs for all k > 1. That is,

e = hey

Therefore, we can write

X2 = €y T X = €11 T X .47
or Xao = AMxger —x) + x forall k> 1 (148)
Reducing the subscript by 1, we have

Xiw = Mg — X) +x (1.49)
Eliminating A between x;,; and x,, from Egs. (1.48) and (1.49), we obtain

I T ~ a1 _ X + X Xan = 2 X1 + 2K~ X~ Xiowr
Xps2 = 22Xy + X Xps2 = 22Xy + X

or x=x, - (Gt = %)

Xy = 2X4y T X
The sequence {x;} defined by

2
(Xges1 = %)

.xk = xk -
Xppa = 2Xp4r + X

converges more rapidly to x than the original sequence {x;} for n = 1 to co.

Example E1.17

The sequence {x;}, n =1 to oo, where x; = 3x* — 2x3 — 2x% + 2.8 converges linearly to x = 1 with 5o = 0.75.
Using Aitken’s acceleration formula, obtain another sequence, which converges faster to x = 2.
Solution:

The results obtained using both linear convergence algorithm and Aitken’s acceleration formula are shown
in Table E1.17.
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Table E1.17: Results obtained from linear convergence and Aitken’s process

Linear convergence Aitken’s process
k Ax, (Xy 4 _Xk)2
Xk AXy = Xge1 — Xk Ax, Xy Xy — 2Xens X,
0 | 0.750000000 | 1.03046875 1.903320561
1 | 1.780468750 | 0.109765625 172 2.000000000
2 | 1.890234375 | 0.054882813 172
3 1 1.945117188 | 0.027441406 1/2
4 | 1.972558594 | 0.013720703 172
5 1 1.986279297 | 0.006860352 172
6 | 1.993139648 | 0.003430176 172
7 | 1.996569824 | 0.001715088 172
8 | 1.998284912 | 0.000857544 172
9 1 1.999142456 | 0.000428772 172
10 | 1.999571228 | 0.000214386 172
11 | 1.999785614 | 0.000107193 1/2

1.7 SUMMARY

In this chapter we described the Taylor’s theorem, number representation including binary, decimal and
hexadecimal numbers. We have defined absolute and relative errors, inherent errors, round-off errors,
truncation errors, machine epsilon and error propagation. Methods for the estimation were briefly outlined.
General error formulae for approximating a function, stability and condition, uncertainty in data, linear
convergence, quadratic convergence and Aitken’s acceleration formulae were presented.

Problems
1.1 Determine the following hyperbolic trigonometric functions to O (0.9)*.

(@) sinh (0.9)
(b) cosh (0.9)
1.2 Determine when f (x) = 0, given that f (1.7) = —-1.7781 and f ' (1.7) = 4.3257.

1.3 Determine f (1.2), given the first order differential equation

ﬁ =2x withf(1) = 1.
dx

1.4 (a) Convert (327)( to binary.
(b) Convert (0.3125),( to binary.
1.5 Represent the number 50824.6135 in the decimal system (base-10).
1.6 Find the binary and hexadecimal values of the following numbers,
(@ 329
(b)y 203
1.7 Convert (75);( to base-2.
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1.8

1.9
1.10
1.11

1.12

1.13

1.14

1.15

1.16

1.17

1.18

1.19

1.20

Perform the following operations:
(@ (25 + (O)

(b) convert (75);( to base-8

(¢) convert (13)g to base-10.
Convert (4D3);¢4 to base-10.
Convert (1001011), to base-8.

Show that the relative error E,, of the product where x = x, + Ax and y = y, + Ay is E,,, = E, +
E,,. Assume |E, | << 1 and |E,,| << 1.

Show that the relative error E,., of the quotient where x = x, + Ax and y =y, + Ay is E,, = E,., — E,..
Assume |E,,| << 1 and |E,| << 1.

Determine the absolute and relative errors involved if x = 2/3 is represented in normalised decimal
form with 6 digits by

(a) round-off
(b) truncation.

Given that 5 digit chopping is used for arithmetic calculations involving x and y where x = 1/3 and
y = 5/7. Determine the absolute and relative errors involved.

If x = 3.536, determine the absolute error and relative error when
(@) x is rounded
(b) x is truncated to two decimal digits.

If the number x = 57.46235 is rounded off to four significant figures, find the absolute error, relative
error and the percentage relative error.

. 22 . . . .
If the approximate value of n(: —j is 3.14, determine the absolute error, relative error and relative

percentage error.

Determine the true error and true percentage relative error for each case.

(a) If the measured length of a track is approximated by 9999 cm and the true value is 10,000 cm
(b) If the measured length of a track is approximated by 9 cm and the true value is 10 cm.

The exponential function e* can be computed using the Maclaurin series expansion as

2 3 xn

X X X
e =l+x+—+—+-+—
21 3! n!

Include six terms in the series and compute the percentage relative error and approximate estimate of
the error for each term when estimating €%-.
2

5
Find the relative maximum error in F which F = x3y . Given Ax = Ay = Az = 0.001, where Ax, Ay and
Z

Az denote the errors in x, y and z respectively such that x =y =z = 1.
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1.21

1.22

1.23

1.24

1.25

1.26

1.27

Consider the trigonometric function f (x) = cos x
(a) find the Taylor series expansion of f(x) about 0.

(b) assuming the Taylor series is truncated to n = 6 terms. Determine the relative error at x = /4
due to truncation. Express it as a percentage.

(¢c) determine an upper bound on the magnitude of the relative error at x = m/4 expressed as a
percentage.

Suppose f(x) = e is to be expanded about the point x = 1 and truncated to n = 6 terms.

2 X3 x4 x5

e =l-x+—-—t———
2 6 24 120

Determine the upper bound on the magnitude of the absolute error due to truncation.
Determine the upper bound on the error for the function
f@=@x+D"?

using a polynomial approximation with third-order Taylor series (computed about x; = 0) for all
xe[0, 1].

Consider the power series expansion for e* given by
2 3 xn—l -1 n

ex=1+x+x_+_+...+ +x—ei,0<§<x.
2! 3l (n=-1! n!

Determine the number of terms, n such that their sum gives the value of e* correct to 8 decimal
places at x = 1.

Use Taylor’s series expansion with n = 0 to 6 to approximate f (x) = cos x at x; , | = /3 on the premise
that the value of f (x) and its derivatives at x; = /4. Assume h = /3 — /4 = ©w/12.

Compute and interpret the condition number for

Zroall
@ f=tanx fora=5+01 7

) f(x)=tanx fora= §+0.01(§j

Evaluate and interpret the condition numbers for

(@ fx)=x2-1D"2_x forx=200

T +1
®) fo)=2 for x = 0.01
=T o x=0.001
(c) f(x)_1+sinx or x = 0.0017

d) fx)=e? forx=5
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1.28 Verify whether the iteration x; ., = g (x;) starting from the given x, converges linearly for the
following functions g(x).

(@) T3 +x2—-Tx—-8,xy = -0.75

b B3 +5x>-4x+15x = 09
(©) 4x*+5x -2x*-3x-2,x0= - 05
d) 33 +x2-5x+3,xp = 05
(e) —4x3 -8 -3x+2,x = -125

1.29 Show that the iteration x; .1 = g (x;) starting from the given x, will not converges quadratically for the
following functions g(x).

@ o 2x° +3.5x2 -6 .
a X)= " 5 -  _ ,Xp=
8 32453 0
b o 8x> +4.5x* -3 |
_x = —’x j——
N o 4 8x+15 0
O 2= 6x° +6x°+1.5 5
< B E T kst 0T
@ 2@ 3xt +4x° +6x7 +1 |
X) = , Xg = —
BV = s +10x—1""°
3t +9x°3 +3x% +5
(e) gx) xg=—4

AP 1A + 752

1
1.30 The sequence {s;}, n =1 to oo, where s; = nln(l+—) , converges linearly to s = 1. Using Aitken’s
n

acceleration formula, obtain another sequence, which converges faster to s = 1.

ONONO)
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CHAPTER

Linear System of Equations

2.1 INTRODUCTION

In this chapter we present the solution of n linear simultaneous algebraic equations in n» unknowns. Linear
systems of equations are associated with many problems in engineering and science, as well as with
applications of mathematics to the social sciences and quantitative study of business and economic problems.
A system of algebraic equations has the form

anXxy + apXy + - + ax, = by

A1oX) + ApXy + -+ + Xy = by

ap Xy + QypXy + - + AppXy = bn (21)

where the coefficients a;; and the constants b; are known and x; represents the unknowns. In matrix notation,
the equations are written as

a;p app A, || % by
dy Ay Aoy || %2 _ b,
: (2.1a)
Ay Ayp Ao X bn
or simply Ax=b (2.1b)

A system of linear equations in #» unknowns has a unique solution, provided that the determinant of the
coefficient matrix is non-singular i.e., if |Al # 0. The rows and columns of a non-singular matrix are linearly
independent in the sense that no row (or column) is a linear combination of the other rows (or columns):

If the coefficient matrix is singular, the equations may have infinite number of solutions, or no solutions
at all, depending on the constant vector.

Linear algebraic equations occur in almost all branches of engineering. Their most important application
in engineering is in the analysis of linear systems (any system whose response is proportional to the input
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is deemed to be linear). Linear systems include structures, elastic solids, heat flow, seepage of fluids,
electromagnetic fields and electric circuits i.e., most topics taught in an engineering curriculum. If the system
is discrete, such as a truss or an electric circuit, then its analysis leads directly to linear algebraic equations.

Summarising, the modelling of linear systems invariably gives rise to equations of the form Ax = b,
where b is the input and x represents the response of the system. The coefficient matrix A, which reflects the
characteristics of the system, is independent of the input. In other words, if the input is changed, the equations
have to be solved again with a different b, but the same A. Hence, it is desirable to have an equation solving
algorithm that can handle any number of constant vectors with minimal computational effort.

2.2 METHODS OF SOLUTION

There are two classes of methods for solving system of linear, algebraic equations: direct and iterative methods.
The common characteristics of direct methods are that they transform the original equation into equivalent
equations (equations that have the same solution) that can be solved more easily. The transformation is
carried out by applying certain operations.

The solution does not contain any truncation errors but the round off errors is introduced due to floating
point operations.

Iterative or indirect methods, start with a guess of the solution x, and then repeatedly refine the solution
until a certain convergence criterion is reached. Iterative methods are generally less efficient than direct
methods due to the large number of operations or iterations required.

Iterative procedures are self-correcting, meaning that round off errors (or even arithmetic mistakes) in
one iteration cycle are corrected in subsequent cycles. The solution contains truncation error. A serious
drawback of iterative methods is that they do not always converge to the solution. The initial guess affects
only the number of iterations that are required for convergence. The indirect solution technique (iterative) is
more useful to solve a set of ill-conditioned equations.

In this chapter, we will present six direct methods and two indirect (iterative) methods.

Direct Methods:

1. Matrix Inverse Method
Gauss Elimination Method
Gauss-Jordan Method
Cholesky’s Triangularisation Method
Crout’s Method

6. Thomas Algorithm for Tridiagonal System
Indirect or Iterative Methods:

1. Jacobi’s Iteration Method

2. Gauss-Seidal Iteration Method

2.3 THE INVERSE OF A MATRIX

If A and B are m x n matrices such that

AB=BA=1 22
then B is said to be the inverse of A and is denoted by

B=A-l (2.2a)

AN N
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In order to find the inverse A~l, provided the matrix A is given, let us consider the product,

1
a  ap a,, My, | =My (_1)+n|Mn1|
AadiA =\ ay, ay, - ay, |X| 1M M, | e (=DM, |
Ao Gy Gy || (DM, L (D IM,, | IM,, |

= [2 D" a1 My I] 23)

J=1

An element of the matrix on the right side of Eq. (2.3) has the value

ay G 4

Y (D ay M l=lay, ay - ay,|=lalifi=k 24)

J=1 T a .
Ay Ap Ay

If i # k the determinant possesses two identical rows, since the determinant corresponding to i # k is obtained
from the matrix [a] by replacing the it row by the k™ row and keeping the k™ row intact. Therefore, if i # k
the value of the element is zero.

Equation (2.3) can be written as
AAdjA=IAIT 2.5)
Premultiplying Eq. (2.5) throughout by A~! and dividing the result by IAl, we get
- dj A
A =2
det A 26)

so that the inverse of a matrix A is obtained by dividing its adjoint matrix by its determinant |Al.

If det A is equal to zero, then the elements of A~! approach infinity (or are indeterminant at best), in
which case the inverse A1 is said not to exist, and the matrix A is said to be singular. The inverse of a matrix
exists only if determinant is not zero, that is, the matrix must be non-singular.

There is no direct division of matrices. The operation of division is performed by inversion; if
AB=C
then B=A"C
where A1 is called the inverse of matrix A.
The requirements for obtaining a unique inverse of a matrix are:
1. The matrix is a square matrix
2. The determinant of the matrix is not zero (the matrix is non-singular)
The inverse of a matrix is also defined by the relationship:
ATA =1

The following are the properties of an inverted matrix:
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The inverse of a matrix is unique.

2. The inverse of the product of two matrices is equal to the product of the inverse of the two matrices
in reverse order:
(AB)! = B1A-!
3. The inverse of a triangular matrix is itself a triangular matrix of the same type.
4.  The inverse of a symmetrical matrix is itself a symmetrical matrix.

5. The negative powers of a non-singular matrix are obtained by raising the inverse of the matrix to
positive powers.

6. The inverse of the transpose of A is equal to the transpose of the inverse of A:
(AT)—I = (A—l) T
Example E2.1

2 3
Find the inverse of the matrix A {5 J

Solution:
Ao 2 3
It “ls5 1
1 -3
then ade:{ }
-5 2
and detA=2x1-5%x3=-13
13
1 3
Hence Al= —i = 1313
13]-5 2 i _i
13 13

24 MATRIX INVERSION METHOD

Consider a set of three simultaneous linear algebraic equations
apyx) + apxy + apxs = by
axix) + apxy + axpxs = by
azix; + azx, + as3x; = by 2.7

Equation (2.7) can be expressed in the matrix form

Ax=b 29
Premultiplying by the inverse A~1, we obtain the solution of x as
x=A" 29

If the matrix A is non-singular, that is, if det (A) is not equal to zero, then Eq. (2.9) has a unique solution.
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The solution for xj is

x—L
N

b _ Gy Ay b dpp  ai3 dp a3
b Oy 3| = —b

by a, a; |
[A I{

dz dsz Az ds3 dy 4

by ayp an

1
= m{blcll +0,C, +b,C, )

where A is the determinant of the coefficient matrix A, and C;;, C,; and Cs; are the cofactors of A
corresponding to element 11, 21 and 31. We can also write similar expressions for x, and x3 by replacing the
second and third columns by the y column respectively. Hence, the complete solution can be written in
matrix form as follows:

X 1 Ci Gy Gy ||h
X :m Co Gy Gy b (2.10)
X3 Cs Gy Gylb
1 1
x}=—[C; |{b} = ——ladj Al{b
or {x) = = [Cilb) = ~Tad] A (D)
Hence Al= ﬁadj Aand Adj A = A1 abs [A] 2.11)

Although this method is quite general but it is not quite suitable for large systems because evaluation of
A-! by co-factors becomes very cumbersome.

Example E2.2
Obtain the solution of the following linear simultaneous equations by the matrix inversion method.
13wl [5
@ 4 -1lx | |12
1 -1 370x] [5
) 4 2 ~1||x|=]0
I 3 1| x]| |5
Solution:
1 3[x ] |5
@ 4 1% |12

Cpy = (D)™I-1 = -1
Cpp= (D)2l = 4
Cy = (D3l = 3
Cyp = (=121 = 1
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Hence C= -b 4
-3 1
CT - -1 -3
-4 1
A C_T:__l -1 -3
Al 13]-4 1
Hence x| 13-4 1|12
—41
=——=3.15
Therefore, 0= 13
d Y= _062
o T3
1 -1 3
(b) [Al=4 2 -1=40

1

3

1

The matrix of cofactors is given by

5
C=]10
=5

=5
=2
13

10

-4

6

The transpose of C is the adjoint of A or

5
AdjA=C"=| -5
10

A‘1=Ade/|Al=i
40

Therefore X = A7'Y = L
40

-5
13
6

or X1=0,.XZ=1,X3=2.

5}__1

13

|

-5

-36

=20 +12

|

nl

—41
-8

|
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Example E2.3
Find the inverse of the matrix
2 20
A=|-2 1 1
301

6
and solve the system of equations [A] {x} = {b} where {b} = {3 ;.
6

Solution:
2 20
The determinant of A=|-2 1 1
3 0 1

=2[1(1) = 0(D)] + 2[2(1) — 0(0)] + 3[2(1) — 1L(O)] = 12

Since det A = 12 # 0, the given matrix is non-singular. The cofactors corresponding to the entries in each row
of det A are

a=|" =1 Co=-|" =3 o= Y=-3
U RN B3 oo
Co = 2.0 5 c 12 0_2 c 2 2_6
2o 2Bl 23 o
cu= =2 c 205 Cu=| > =6
T 202 S |
o1 1
P B I B - R S
Hence Al=—=— 2 2(=| 2 % -1
1Al 12 26 T
=36 6/ -y 7 3
It is easy to verify that A-TA = AA-1 =1
6 _3,6 | [66+12
X Lo-1 Lhe) |3-gte 2 1
_ady, | 5 _|30.3_6 |_|30+6-12 |_
Therefore x [=[ATh=| 3+ —t|3|=|5+i-L = =2
-L 1L 1lig 6.,3.6 —6+6+12 3
X3 4 2 2 SHyto | | TR

2.41 Augmented Matrix

A system of linear equations in matrix notation takes the form Ax = b, where A is of order m x n, x is of order
n x 1. The augmented matrix [Ap] can be obtained by adjoining column b to matrix A. In terms of partitioned
matrices we have [A,] = [A : b].
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As an example let us consider a set of linear equations

xX+y+z=38
x+y-z=5
x—y+z=2
Then we have,
1 1 1 8
[Al=1 1 -1|; {b}=15
1 -1 1 2
1 1 1 8
and [A4]=]1 1 -1 5
1 -1 1 2

2.5 GAUSS ELIMINATION METHOD

Consider the following system of linear simultaneous equations:

ayxy + apxy + apzxz = bl (212)
arX1 + axpxy + dxxz = bz (213)
azix; + azpx, + dzzxz = b3 (214)

Gauss elimination is a popular technique for solving simultaneous linear algebraic equations. It reduces the
coefficient matrix into an upper triangular matrix through a sequence of operations carried out on the matrix.
The vector b is also modified in the process. The solution vector {x} is obtained from a backward substitution
procedure.

Two linear systems Ax = b and A'x = b’ of equations are said to be equivalent if any solution of one
is a solution of the other. Also, let Ax = b is a linear non-homogeneous system of n equations. Suppose we
subject this system to the system of following operations:

1. Multiplication of one equation by a non-zero constant.
2. Addition of a multiple of one equation to another equation.
3. Interchange of two equations.

If the sequence of operations produce the new system A’x = b’, then both the systems Ax = b and
A’x = b' are equivalent. In particular, then A is invertible if A’ is invertible. In Gauss elimination method, we
adopt this and the elimination process is based on this theorem.

In Gauss elimination method, the unknowns are eliminated such that the elimination process leads to an
upper triangular system and the unknowns are obtained by back substitution. It is assumed a;; # 0. The
method can be described by the following steps:

Step 1: Eliminate x; from the second and third equations.
Using the first equation (2.12), the following operations are performed:

a, a,

(2.13)—(ﬂj(2.12) and (2.14)—[ﬁJ(2.12)
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gives apxy + apx; + apxy = by 2.15)
a'sxy + a'yxz = b (2.16)
a'yxy + a'yzx3 = b’y 2.17)

Equation (2.15) is called the pivotal equation and the coefficient a;; is the pivot.

Step 2: Eliminate x, from the Eq. (2.17) using Eq. (2.16) by assuming a’, # 0. We perform the following
operation:

2.17) - (@j (2.16)

ax
to obtain  ajx; + apxy + apxz = by (2.18)
a'yxs + a'yxy = b’ (2.19)
and a%yx3 = b'y (2.20)

Here Eq. (2.19) is called the pivotal equation and the coefficient a';, is the pivot.

Step 3: To find x|, x, and x3, we apply back substitution starting from Eq. (2.20) giving x3, then x, from
Eq. (2.19) and x; from Eq. (2.18).

Pivoting:

Gauss elimination method fails if any one of the pivots in the above equations (2.12) to (2.20) becomes zero.

To overcome this difficulty, the equations are to be rewritten in a slightly different order such that the pivots
are not zero.

Partial pivoting method:

Step 1: The numerically largest coefficient of x| is selected from all the equations are pivot and the
corresponding equation becomes the first equation (2.12).

Step 2: The numerically largest coefficient of x;, is selected from all the remaining equations as pivot and the
corresponding equation becomes the second equation (2.16). This process is repeated till an equation into
a simple variable is obtained.

Complete pivoting method:

In this method, we select at each stage the numerically largest coefficient of the complete matrix of coefficients.
This procedure leads to an interchange of the equations as well as interchange of the position of variables.

Example E2.4

Solve the following equations by Gauss elimination method:
2x+4y—-6z =-4

x+5y+3z=10
x+3y+2z= 5

Solution:
2x+4y—6z =—4 ED
x+5y+3z=10 E2)
x+3y+2z= 5 ES3)
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To eliminate x from (E.2) and (E.3) using (E.1):
2x+4y—-6z = -4
x+5y+3z= 10 1 x(=2)
x+3y+2z= 5 1 x(=2)
2x+4y—-6z = 4
—2x—10y — 6z =20
—2x -6y —4z =-10
2x+4y—-6z = 4
Row 1 + Row 2:— 6y — 127 =24 (E.6)
Row1+Row3: 2y-10z = -14 1 x (=3) ES)

To eliminate y from (E.5) using (E.4):
2x+4y—-6z =4
—6y—12z =24
6y+30z = 42
2x+4y—-6z =4
—6y—12z =-24
Row 2 +Row 3: 18z =18 =|z=1

Evaluation of the unknowns by back substitution:

—6y— 127 =24
24-12x1
6y =24 -12z =>)’=T
2x+4y—-6z =4
—4-4x2+6x1
2t =-4-4y+67 Sr=————— = x=-3
Example E 2.5
Use the method of Gaussian elimination to solve the following system of linear equations:
X1+ X+ X3— X4 = 2
Axy + 4xy + x5+ x4 = 11
X — X2 — X3 +ZX4 =0
2x1 + X + 2.X'3 - 2X4 =2 (El)
Solution:
In the first step, eliminate x; terms from second, third and fourth equations of the set of equations (E.1) to
obtain:
X|+Xp+x3—x4 =2
—3)(3 + SX4 =3
—2X2 - 2X3 + 3)(4 =2
—Xy = -2 (E2)
Interchanging columns in Eq. (E.2) putting the variables in the order x;, x4, x3 and x, as
X1 — X4+ X3+ Xy = 2
—5X4 - 3)(3 =3
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3x4 — 2x3 — 2xp = 2
—Xy =2
In the second step, eliminate x4 term in third equation of the set of equations (E.3)
X|—=Xg+X3+Xx =2

S.X4 — 3X3 =3
—1/5x3 — 2%, = —19/5
—Xy = 2

Now, by the process of back substitution, we have

x2:2,x3:—1,x4:0,x1:1.

Example E2.6

Using the Gaussian elimination method, solve the system of equations [A] {x} = {b} where

1 1 1 1 3
[A]= 0 =l
2 0 3 1
-1 0 2 1 0
Solution:
The augmented matrix is
11 1 1 3]
2 -1 3 0 3
[AyJ=] 0 2 0 3 1
0 2 0 3 1
-1 2 1 0]

From the augmented matrix, we apply elementary transformations:

1 1 1 1 3
0O 3 1 -2 3
Row 2—-2xRow 1
0 0 3 1
Row 4+Row 1
0 0 1
10 3 3|
which gives
1 1 1 1 3 1 1 1 1 3
o -3 1 -2 =310 -3 1 -2 -3
2 5

0 0 % 5 -1|j0 0o %2 3 -]
o o 2 2/lo 0o o0 -7 7

Hence, by back substitution the upper triangular matrix, we obtain

.X4=—1,X3=1,XZ=2,X1=1.

E3)
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2.6 GAUSS-JORDAN METHOD

Gauss-Jordan method is an extension of the Gauss elimination method. The set of equations Ax = b is reduced
to a diagonal set Ix = b’, where [ is a unit matrix. This is equivalent to x = b". The solution vector is therefore
obtained directly from &'. The Gauss-Jordan method implements the same series of operations as implemented
by Gauss elimination process. The main difference is that it applies these operations below as well as above
the diagonal such that all off-diagonal elements of the matrix are reduced to zero. Gauss-Jordan method also
provides the inverse of the coefficient matrix A along with the solution vector {x}. The Gauss-Jordan method
is highly used due to its stability and direct procedure. The Gauss-Jordan method requires more computational
effort than Gauss elimination process.

Gauss-Jordan method is a modification of Gauss elimination method. The series of operations performed
are quite similar to the Gauss elimination method. In the Gauss elimination method, an upper triangular matrix
is derived while in the Gauss-Jordan method an identity matrix is derived. Hence, back substitutions are not
required.

Example E2.7

Solve the following equations by Gauss-Jordan method.
x+3y+2z =17
xX+2y+3z2=16
2x—-y+4z=13

Solution:

Consider x+3y+2z =17 E.D
x+2y+3z =16 E2)
2x—-y+4z =13 [E3)
x+3y+2z =17 EDEE2)+E3)
x+2y+3z=16 E2)DH+ED
2x—y+4z=13
x+3y+2z =17

y—-z=1 x(2) + (E.1)
Ty =21 =
x+5y =19
y-z=1 =z=y-1=3-1 =|z=2]
x+5y =19 =x=19-5x3 = [x=4|
Example E2.8
Solve the following system of equations using the Gauss-Jordan method.
x—2y = -4
Sy+z= -9

4x -3z =-10
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Solution:

The augmented matrix is

1 2 0!l -4
0 -5 11 -9
4 0 -3]-10

Multiplying 15t row by —4 and adding the result to the 3™ row, we obtain

1 2 0!l-4
~4R +R; >0 -5 1 1-9
0 8 3| 6

Now, multiply the 2" row by —1/5

| 1 =2 0! —4
—SRo|0 115 19/5
0 8 -3, 6

Multiply the 2" row and add the result to the 1% row. Then multiply the 2" row by —8 and add the result to
the 3 row.

0 -2/51 -2/5
2R, +R >0 1 -1/51 9/5
10 0 -7/5|-42/5
Multiply 3 row by —-5/7
[1 0 -2/51-2/5
—§R3% 0 1 -1/5] 9/5
10 0 1] 6

Multiply 3" row by 2/5 and add the result to 1 row. Then multiply 3 row by 1/5 and add the result to 2™ row.
ZR+R —[1 0 02
01 0i3
1R +R,>[0 0 16

Hence, the last matrix above represents the system with x =2, y=3 and z = 6.

Example E2.9
Solve the following set of equations by Gauss-Jordan method.
2x1 +xp —3x3 = 11
dx; —2x +3x3 = 8
=2x1 4+ 2xy —x3 =6
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Solution:

The augmented matrix for the given set of equations is

2 1 -3 11

p L3
2 2 2
Step 1: Divide Row 1 by 2 4 =2 3 8
-2 2 -1 -6
p L3
2 2 2

. Row 2—-4xRow 1
" Row 3—-2xRow 1

Step 2

p 13
2 2 2
.. 9 7
Step 3: Divide Row2by -4 |0 1 1 2
0 3 4 5
1o -2 B
8 4
- 9 7
Step 4: Row 1-1/2xRow 2 0 1 -2 7
Row 3—-3XxRow 2 4 2
o3 LIl
L 4 2]
1o 2B
& 4
. 9 7
Step 5: Divide Row 3 by 11/4| 0 1 2 3
10 0 1 2
1 00 3
Step 6 Row 1+3/8xRow 3 010 -1
Row 2+9/4xRow 3 00 1 =2

Hence the solution is x; = 3, x, = -1, x3 = 2.
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Example E2.10
Solve 2x; +6xy+x3 = 7
Xp+ 2% —x3 =—1
Sx1+Tx—4x3 = 9

Using (a) Gaussian elimination and (b) Gauss-Jordan elimination.

Solution:

(a) Using row operations on the augmented matrix of the system,

2 6 1|7 12 -1 -1} pup 1 2 -1|-1
12 —1|-1|—Lesl2 6 1| 7|22% 50 2 3] 9
57 419 57 4] 9 0 -3 1|14
e 1 2 -1|-1 1 2 -1 -1 ) 1 2 -1 -1
2™ 3| 9| __3R+R 3 9 > 309
0 -3 1]14 00 4 3 00 1 5
The last matrix is in row-echelon form and represents the system
X1+ 2X2 —X3 = -1 (EZ)
9
2
X3 = 5 (E4)

()

Substituting x; = 5 into Eq. (E.3) gives x, = —3. Substituting both these values back into Eq. (E.2)
finally yields x; = 10.

We start with the last matrix in Eq. (E.1) above. Since the first entries in the second and third rows
are 1s, we must, in turn, make the remaining entries in the second and third columns Os:

12 —1]-1 1 0 —4|-10 4’§3;R‘R 1 0 0|10

30 9| -2R+R 3 g |  Tputh
01 22 01 2| 2—2""5010]|-3 E5)
00 1|5 00 1| 5 00 1|5

The last matrix in Eq. (E.5) is now in reduced row-echelon form. It is evident that the solution of
the system is x; = 10, x, = -3, x3 = 5.

LU Decomposition: It is possible to show that any square matrix A can be expressed as a product
of a lower triangular matrix L and an upper triangular matrix U.

A=LU
For instance
ayp dpp a3 L, 0 0 |Uy Uy, Ups
Ay Ay Gy |=| Ly Ly O 0 Uy Uy
az)p dzp a4z Ly Ly Ly O 0 Usj



44 // Numerical Methods //

The process of computing L and U for a given A is known as LU Decomposition or LU Factorisation. LU
decomposition is not unique (the combinations of L and U for a prescribed A are endless), unless certain
constraints are placed on L or U. These constraints distinguish one type of decomposition from another.
Two commonly used decompositions are given below:

1.  Cholesky’s decomposition: Constraints are L = U
2. Crout’s decomposition: Constrains are U; =1,i=1, 2, ..., n.
After decomposing the matrix A, it is easier to solve the equations Ax = b.

We can rewrite the equations as

LUx=b
or denoting Ux =y, the above equation becomes
Ly=>b

This equation Ly = b can be solved for y by forward substitution. Then Ux = y will yield x by the
backward substitution process. The advantage of LU decomposition method over the Gauss elimination
method is that once A is decomposed, we can solve Ax = b for as many constant vectors b as we please.
Also, the forward and backward substitutions operations are much less time consuming than the
decomposition process.

2.7 CHOLESKY’S TRIANGULARISATION METHOD

Cholesky’s decomposition method is faster than the LU decomposition. There is no need for pivoting. If the
decomposition fails, the matrix is not positive definite.
Consider the system of linear equations:
apXy + apxy + apxs = by
ay Xy + apx; + axx; = by

az x| + azx; + axy = by 21
The above system can be written as (2.22)
Ax =b
a;p dp di3 _xl by
Where A = Cl21 Cl22 Cl23 , X = .XQ N b = b2
a3 dzp 4z 1 X3 by
Let A=LU... (2.23)
1 0 O _un Uy Uy
L=\l 1 Oland U=| 0 uy uy
by Ly 1 10 0 uy

Equation (2.21) can be written as
LUX=b 2.24)
If we write Ux=V (2.25)
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Equation (2.24) becomes
LV=>b (2.26)

Equation (2.26) is equivalent to the system

v = by
vy + vy = by
Lyvi + Ipvs + v3 = D3 .27
The above system can be solved to find the values of v, v, and v3 which give us the matrix V.
Uux =V
then becomes
Uy Xy + UpXy + Upzxz = vy
UpXy + Up3X3 = V)
U3zX3 = V3 (2.28)

which can be solved for x3, x, and x; by the backward substitution process.

In order to compute the matrices L and U, we write Eq. (2.23) as

L0 Ofluy wy wus 4 Gy a3
Ly 1 0|1 0 uyp wupy|=|ay ay day (229
Ly Ly 1]]0 0 wuy| |a3 apn ay

Multiplying the matrices on the left and equating the corresponding elements of both sides, we obtain

Uiy = apy, Uy = g, Uz = a3 (2.30)
a
_ _ay
by =ay =L =—=
ay
sy 231)

Ly = a3y = Iy =——
apy

I F il = Gy =5 1y = g — 2L
21Uy T Uy = dyy = Upy =dyy ap
11

_ _ as 2.32)
Lz +yy = Ay = Uyy = ay3 ——ay3
app
1 az;
Ly + oty = a3y = Iy =——| ayp ———ap (2.33)
Uy a;
and l311/l13 + 1321/[23 + Uzz = asz (234)

The value of u3; can be computed from Eq. (2.34).

To obtain the elements of L and U, we first find the first row of U and the first column of L. Then, we
determine the second row of U and the second column of L. Finally, we compute the third row of U.
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Cholesky’s triangularisation method is also known as Crout’s triangularisation method or method of
factorisation.

Example E2.11
Solve the following equations by Cholesky’s triangularisation method.
2x+y+4z =12
8x—-3y+2z =20
dx+1ly-z=33

Solution:
2 1 4 X 12
We have A= -3 2|, X=|y|, B=|20
4 11 -1 z 33

Let Ly 1 0] 0 wuypy uy|=[8 -3 2

Multiplying and equating we get:
[Xupg = 2= uy|=2
[Xup = 1= fu,|=1
[ XUy = 4= |us|=4

8§ 8
Ly Xuy = 8=>=—=5=4

Uy

121XM12+M22 :—3=>:—3—121XM12:—3—4X1:—7

Ly X+, = 2= |uy|=2-1, xu,=2-4x4=-14

4 4
131Xu11 =4 :}:u—zazz
11

11-1;, % -
11:: 1 u12:11 2><1: 9

Lixup + lpXuy, =
Uy, -7 7

l31><ll13 + l32><ll23 + lel33= -1= =—1 —l31><u13—l32><u23=—1 —-2x4 - (-%(-14))=—27

! 00 2 1 4
We get: A= 4 1o 0 -7 -14
2 2 1o 0 =27

7
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and the given system can be written as:

! 00 2 1 41 x 12

4 ho 0 -7 -14||y|=|20

2 2 10 0 -27]||z 33
7

Writing: LV = B, we get

1 00 v, 12

4 1 0 v, =20

2 2 1| V5 33
7

which gives =12 =

4V, +V, =20 =|V,|=20-4x 12 =28

2V, _%Vz +Vs =33 :>:33+%(—28)—2>< 12 =27
The solution to the original system is given by:
ux =v
2 1 41 x 12
0 -7 -14]| y|=|-28
0 0 27|z =27

2x+y+4z =12
Ty - 14z =-28
277 =-217 =lz=1]

14
Ty=28-14x1=>y=—=|y=2
y =3

6
2x=12—y—4z=12—2—4><1:>x=52>

Example E2.12

Solve the system of equations using Cholesky’s factorisations.
X|+Xp+x3—Xx4 =2
Xp—Xp)—x3+2x4 =0
dxy +4xy) + x5+ x4 = 11
2x; + Xy + 2x3 —2x4 =2
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Solution:

The set of equations can be written in the matrix form [A]{x} = {b}

111 -1[x] (2
1 -1 -1 2||xn| o
4 4 1 1|
2 1 2 2||x] |2

Let us decompose [A] in the form

where

The product of [L][U] gives

l
[LI[U]=
Loy Ly, +lpuyy Ly + iy +uss

[A] = [L] [U]
1 0 0 O Uy U
l 1 0 0 0 u
[L1=|"* and [U]= 22
Ly Ly 1 0 0 0
ly Ly Ly 1 0 0
Uy Uy U
oty gl iy, Lyuys +uys

Lywy Ly + Lty Ly + Lpuys +zuss

Uz Uy
Upyz Upy
Uzz Uy

0y

Uy
by +uyy
Ly g + oty + 3y

Lyt + Lyping + Lysttsy + iy

Equating the elements of this matrix to the [A] matrix yields the following equations

up =1
up =1
Uz =1
Uy =-1

Ly =1 Ly =4

Ly + up =-1 Ly + lpuyp =4
Lz + up =-1 Lz + lpups + uzz = 1
Ly + uzq =2 Ly + lpuag + uzg = 1

By solving these sixteen equations we get

[L]

10 0 0 11 1 -1
Lo o 2 2 03
40 1 o™WI=lg o 5 5

1 1 1
2 1 -1 00 o0 1

To solve [A]{x} = {b} we have to solve the two systems
[LI{Y} = {b}
[Ulx} = {Y}

lyquyy =2
Lyguyn + lyguyy =1
Lz + lgups + Izuzz =2

Lygurg + lagung + lyguzg + ugy = -2
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1 0 0 Oy 2

I 1.0 0|y, 0
ie., =

4 0 1 0]|y, 11

2 1Ll |2

which gives by forward substitution

Vi=2,02=-2,y3=3, =0
and hence [U]{x} = {y} becomes

111 -1](x 2
0 2 =2 3||x| |-2
0 0 -3 5||g[ |3
00 0 1y 0

Then by back substitution we obtain
.X4=0,.X3=—1,XZ=2,X1 =1.
Example E2.13

Solve the system of linear equations using Cholesky’s factorisation method.
2x—6y+8z =24

Sx+4y—-3z=2
3x+y+2z =16
Solution:
I 0 Ofu; u, ups 2 -6 8
Ly 1 0l 0 wuy uyl=|5 4 -3
Ly Ly 10 0 wuy| [3 1 2
up U, U 2 -6 8
Ly Ly +uy Lyyuyz +up3 =5 4 3
Ly Ly + gy L3z + Ipliyy +us3 31 2
uy =2, upp = -6, uz=3
L =—=25
Uy
L =215
Mll

Uy =4 — b =19

up3 = -3 — Lyjuy3 = 23
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1=Lyuy, 10
Ly =—"==—
Uy 19
40
133=2—l31M13—l32U23=E
1 0 0 (2 -6 8
L={25 1 0|, u=|0 19 -23
10 40
15 10 00 %
10 0w ] [24
LV=B= |25 1 0|v,|=|2
1.5 % 1_ V3 16
= V1:24
vy =2-25x24=-58
10 200
v3=16—-15x24 ——(-58) = —
19 19
2 -6 8 ||x 24
-58
UX=V=|0 19 -23||y|=
200
0 0 N, =
19 19
2x—6y+8z =24 E.1)
19y - 23z = -58 (E2)
ﬂz—@: z=5 3
19 19 E3)

From Egs.(E.2) and (E.3), we have
y=3
From Egs.(E.1), (E.2) and (E.3), we get

x=1

2.8 CROUT'S METHOD

This method is based on the fact that every square matrix A can be expressed as the product of a lower
triangular matrix and an upper triangular matrix, provided all the principle minors of A are non-singular. Also,
such a factorisation, if exists, is unique.

This method is also called triangularisation or factorisation method. Here, we factorise the given matrix
as A = LU, where L is a lower triangular matrix with unit diagonal elements and U is an upper triangular
matrix. Then,

Al = (LU)’I = UL
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Consider the system
anX; + apXy + apzxz = by
Ap1X1 + AyXy + ax3xz = by

az1 Xy + azpxy + dzzxz = b3 (235)
The above system can be written as
Ax =b
Let A=LU (2.36)
Ly 0 O 1w, up
where L=\l L, O0|and U={0 1 u,, 2.37)
Here, L is a lower triangular matrix and U is an upper triangular matrix with diagonal elements equal to unity.
A=LU= A1 =U'L"! (2.38)
_an ap a13_ _111 0 0|1 uyp upy
NOW A = LU = a21 a22 a23 = 121 l22 0 O 1 I/l23
| 431 43 433 _l31 Ly 3]0 0 1
_an ap 913_ _111 lyuyy lyuys
or Ay Ay Gy |=|hy Ly +iy Ly + ity
| a31 Gz as3 | | by Bty Ly +lsuys +

Equating the corresponding elements, we obtain

Ly =an by = ay 31 = ay (239
Ly = ap Lz = ans (240
by + by = ap L + I = az (241)
bz + lpuyy = ax (242)
and Lz + Loy + 33 = axs (243)

from (2.40) we find
up = aplly = aplay

from (2.41) we obtain

Ly = ax — hup 244

l3p = a3y — Lup (245)
Equation (2.42) gives

uzz = (a3 — huxs)lln (2.46)

from the relation (2.43) we get
l33 = asz — L3 — I3us (247)
Thus, we have determined all the elements of L and U.
From Eqgs.(2.36) and (2.37) we have
LUx =b (248)
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Let ux =v
V1
where V= v‘2
v

From Eq. (2.48) we have LV = b, which on forward substitution yields V.
From UX =V, we find x (by backward substitution).

Example E2.14
Solve the following set of equations by Crout’s method:
2x+y+4z =12
8x—-3y+2z =2
dx+1ly-z=33

Solution:
2 1 4 X 12
We have A=|8 3 2|, X=|y|, B=|20
4 11 -1 z 33
AX = B
Let A= LU
L 0 0 1wy, upy
2 1 4] [, 0 O]l wy wuy
8 =3 2=l Ly 00 1 uy
4 11 -1 By Ly )0 0 1
[2 1 4] _111 lyuyy lyuys
8 =3 2 |=|hL bLuytly, Ly + by
14 11 —1] | by Luy+hy Gugs+huys i

1
-
4

lhup = 43:522

1
122 + lZl“lZ =3= = —3—8(Ej =-7

Ly

1
Ly + Lyup =-3 =>=11_4(Ej -9
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2-8x2
byuiz + lpurz = 2:>: EE

1311413 + 1321423 + 133 =-1= =—-1-4%x2-9%x2=-27

2

2
2
1

L=|8 -7 0| and U=|0

S = =

4 9 27]|v | |33

v = 12=y|=6
—20+8%6
8V1—7V2 :20=>=f:4
—33+4><6+9><4_1

27

vy + vy — 27wy = 33 = |1 | =

V=V, |=|4|; Ux=V

o
S = =

1
x+—y+2z=6
2)’

y+2z=4

y=4-2x1

-
1
x=6- 2 x2-2x1 = [x=3]
Example E2.15
Solve the following set of equations by using the Crout’s method:
2X1 + X+ X3 = 7
X1+ 2)(2 + X3 = 8
X1+Xx+2x3 =9
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Solution:
2 11 X
A=|1 2 1|, x=|y|, B=
11 2 z
Let A=LU
L 0 0 1wy, up
L=\l L, O U=|0 1 uy
Ly Ly Iy 0 0 1
211 I hyuyy hyys
12 1=l L+l Lyuy3 + Lyt
112 Ly Ly +hy Ly + iy +1s
I =2, =1, ;=1
1 1
M12=E, M13=E
1 3
by =2-bup=2-1x7 =7
hy = 1 — Iyt =1 1% ~ = ©
2 2
1-buy 1
M23=T=§
1 1 4
I3 =2 = Iyjupz — Iy = 2 — 5_5X§=§
2 0 0 1 1/2 1/2
L=|1 3/2 0, U=|0 1 1/3
1 1/2 4/3 0 0 1
Ax=B, LUx=B, Ux=V
2 0 0 ||w» 7
LV=B=|1 3/2 0 |lv,|=|8
112 43w | |9
v =T=v, =35
3 3.5
v1+5v2=8ﬁv2=3 —v=l3

1 4
vl+5v2+§v3 =9=1;=3
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1 1/2 1/2][x] [35
Ux=V=[0 1 1/3||x|=|3
0 0 1 |x| |3

1 1
1
Xy +§x3 =3 ([E2)

From Eqgs.(E.2) and (E.3), we have

XZ = 2
From Eq.(E.1), we get
x =1

2.9 THOMAS ALGORITHM FOR TRIDIAGONAL SYSTEM

Consider the system of linear simultaneous algebraic equations given by
Ax=b

where A is a tridiagonal matrix, x = [x;, X,, ..., x,]7 and b = [by, b,, ..., b,]". Hence, we consider a 4 x 4
tridiagonal system of equations given by

a, as 0 0 || x b,

ay Ay a0 |x _ b,
0 a3 ap ayn|x bs (2.48a)
0 0 ay ap]lx b,

Equation (2.48a) can be written as
apx; + apzxy = by
Ay X1 + axpXy + dyXz = by
a3ixy + axs + daszxy = by
ag X3 + agpxy = by (2.48b)

The system of equations given by Eq.(2.48b) is solved using Thomas Algorithm which is described in three
steps as shown below:

Step 1:  Set y; = a;» and compute

_ @ad-13

Yi-1

Y, =a; i=2,3,...,n
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b
Step 2:  Set z = ——and compute

ap
b.—a. .z, .
zi:’—’l’l i=2,3,....n
Vi
. _ 94i3Xit1 .
Step 3: X =z ———— i=n-1,n-2,...,1, where x,, = z,,
Vi

Example E2.16

Solve the following equations by Thomas Algorithm.
3x;—x, =5
2x1 —3x, 4+ 2x3 =5
Xy + 2x3 + 5x4 = 10

.X3—)C4:1
Solution:

3 -1 0 Ollx] [5
" 2 32 0|xn| |5
e 0 12 5|x| |10

0 0 1 —1x]| |1

[a29 as, a4] = [27 1’ 1]
[bla bZ’ b37 b4] = [35 _37 2’ _1]
[c1, €2, 3] = [-1,2,5]

Step 1:  Set y; = b; and compute
4iCi—

Yi-1

vy =b; — i=2,3,...,n

yi =3
a,c 2(-1) 7
I o B
A 3 3

a,c 1x2 20
=[] -2 D220
2

7 7
3
a,c 1.5 55
A
7

Step 2: Setz1=b—1=—,z,-=—' i=2,3,..,n
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5
i=2 . dy —ayz 5_2X§ 5
=z, Z2_ - = -
Y2 _Z 7
3
5
10—-1] —=
d3_a322 ( 7) 75
123’ = = = —
Y3 @ 20
7
. dy —a4z3 1_1X%
l:4, 1= = :1
. V4 _g
20
CiXiyl | .
Step3:Set x, =z, ——;i=n-1,n-2,...,1; x,=2,

=Z4=
=3, :Zg_c3x4 _E_5X1:
Y3

20 20
7
=2, :ZZ_C2x3 :_§_2><72:
Y2 To_7
3
-1, :Zl_clx2 :E_(—l)X1:
N 3 3

Example E2.17

Solve the following set of tridiagonal set of algebraic equations using Thomas’s method.
X1 +4x, =10
2x1 + 10x, —4x3 = 7
X, +8x3—x4 =6
X3 —6x4 =4
Solution:

bix; + cix, =d,
a)x; + byxy + cox3 = d,
asxy + baxz + c3x4 = ds

agxs + byxy = dy
an=2,a3=1,a4 =1
bi=1,b,=10,b3 =8,by=-6
ci=4,¢c,=-4,¢c3 =-1
di=10,d,=7,dy =6,dy,=4
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Stepl:  Sety =0,

10

Step 2: Set 4= b %
I

_10_
1

31 10

7-2.10 13
ZZ = -

2

_—60+1 59

10

Vi

2

_d _di—azi,

& 10

“4 =" 59710

Step 3: Set X1 =211 X =2, —

_4-1x25/20

10

55

T

CiXi+1
b

Vi

[x,] = _15T58: ~0.466

_g_ (=1)(=55/118)
317 20 10

13 (=4)1.203
ba]= _7_%: B

4(-4.094
= 10—% =26.376

i=2,3,...,n

1=2,3, .. , N

_6-1(-13/2) _6+13/2 25

20

=1.203
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210 JACOBI'S ITERATION METHOD

This method is also known as the method of simultaneous displacements. Consider the system of linear
equations

anxy + apx; + apxz = by
az Xy + ayXy + axxz = by
az1 Xy + azpx; + dzzxz = b3 (249)

Here, we assume that the coefficients a;;, a,, and asz; are the largest coefficients in the respective equations
so that

|Cl11| > |012| + |Cll3|

|Cl22| > |021| + |Clz3|
|Cl33| > |a31| + |Cl32| (250)

Jacobi’s iteration method is applicable only if the conditions given in Eq.(2.50) are satisfied.

Now, we can write Eq.(2.49)

1
X =—(b —a;nx, —aj3x3)

a;
1
Xy =——(by — asx; — axsxs) (251)
az
1
X3 = — (b3 — az1x; — anx,)
as3

Let the initial approximations be x{), xg and xg respectively. The following iterations are then carried out.

Iteration 1: The first improvements are found as

_ 0 0
= (b1 — Xy —a13x3)
ap
_ 0 0
X1 = (bz —ay X — a23x3)
axn
Y = 1 b — 0 0
3T, 3 A3 X T dzX) 2.52)
33

Iteration 2: The second improvements are obtained as

X =—— (b — appxp — a3xay)
ap

1
Xyy =——(by — ap1x11 — axx3y)
ay)

1
X3 = (b3 — azyxy — axnxyy) 2.53)
33
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The above iteration process is continued until the values of x;, x, and x3 are found to a pre-assigned degree
of accuracy. That is, the procedure is continued until the relative error between two consecutive vector norm
is satisfactorily small. In Jacobi’s method, it is a general practice to assume xlo = xg = x(z) =0.. The method
can be extended to a system of n linear simultaneous equations in n unknowns.

Example E2.18
Solve the following equations by Jacobi’s method.
15x +3y-22 =8
2x+10y+z =51
x-2y+82=5
Solution:
In the above equations:
1151 > 131 + -2l
1101 > 121 + 1
181> 111 + -2

then Jacobi’s method is applicable. We rewrite the given equations as follows:

1 1

x=—(d —-by-¢qz) =—-@85-3y+22)
a 15

—L(d — A, X—Cy7) = L(51—2)c—z)

y b, 274 2 10
1 1

1=—(dy—ax—byy) =—(5-x+2y)
C3 8

Let the initial approximations be:
W=y0=79=0

Iteration 1:

_d & _17
_ 15 3

a

d, 5l
= = —
b, 10

_4 3
_ c; 8

Iteration 2:

(85—3xf—1—

1 1
X, =—(d —byy—z)=—
a 0

} 15

=473

5
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1 1 17 5
=—(dy—ayx; — 7)) =—| 51-2Xx——1x—
2 bz(z 2 X —C221) 10( 3 8)
[y,]=3.904
1 1 17 51
2, =—(dy—ayx; — b =—(5—1><—— -2 X—)
2 03(3 3% 3)’1)8 3()10
=1.192

Iteration 3:

1
= —(85-3x3.904+2x1.192) = 5.045
A0S

=%(51—2x4.73—1x1.192) — 4.035

[2:]= %(5—1><4.173+2><3.904) =1.010
Iteration 4:

= L (85-3x%4.035+2x1.010) = 4.994
75

1
= (51-2x5.045-1x1.010)=3.99

1
= (5-1x5.045+2x4.035) = 1.003
Iteration 5:

1
= 5(85-3x3.99+2x1.003) = 5.002
1
=E(51—2x4.994—1x1.003) =4.001
= %(5—1><4.994+ 2%3.99) = 0.998
Iteration 6:
1
=5 (85-3x4.001+2x0.998) = 5.0

1
=E(51—2x5.002—1><0.998) - 4.0

=%(5—1><5.002+2><4.001) =1.0
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Iteration 7:

1
=E(85—3><4+2><1)=5.0
1
=E(51_2X5_1X1)=4'0
1
=§(5—1><5+2><4):1.0

Example E2.19

Use the Jacobi iterative scheme to obtain the solutions of the system of equations correct to three decimal
places.

x+2y+z=0

3x+y-z=0

x—-y+4z =3
Solution:

Rearrange the equations in such a way that all the diagonal terms are dominant.

3x+y-z=0
x+2y+z=0
x—-y+4z =3
Computing for x, y and z we get
x =(@-y3
y =(x—-27)/2
z2=0CB+y-x/4

The iterative equation can be written as
_x(r +1) = (Z(r) — y(r))/3
YO+ = () = 2002
20+ = (3 — X 4+ y0)/4

The initial vector is not specified in the problem. Hence we choose
X = y© =70 = |
Then, the first iteration gives
2D = (O —y)3 =(1-1)3=0
Y = (=xO@ - 202 = (-1 -1)2=-1.0
W =B -xO +yO0)4=3-1+1)/4=0.750
similarly, second iteration yields
X2 = (2 — yMy3 = (0.75 + 1.0)/3 = 0.5833
¥ = (=D — z0)/2 = (-0 - 0.75)/2 = - 0.3750
72 =3 - xD + yy/4 = (3 -0 - 0)/4 = 0.500
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Subsequent iterations result in the following:

x¥=0.29167 y®=-0.47917 79=0.51042
x%=0.32986 y¥=-0.40104 7% =0.57862
x9=0.32595 y®=-0.45334 79=0.56728
x©=0.34021 ¥©=-0.44662 79=0.55329
x7=0.3333 y7=-0.44675 77=0.55498
x®=0.33391 y®=-0.44414 z®=0.55498
x9=0.33304 ¥y =-0.44445 79=0.5555
so to three decimal places the approximate solution
x=0.333 y=-0.444 z=0.555

Example E2.20

Use Jacobi iterative scheme to obtain the solution of the system of equations correct to two decimal places.

5 =2 1 4
1 4 2|=| 3
1 2 4 17

Solution:
Jacobi’s method is applicable only if the conditions given by Eq.(2.50) are satisfied.
Here I5/> 121+ 11l or 5>3
41> 111+ 11 or 4>3
41>+ 12l or 4>3

Clearly, the iterative approach will converse. Hence, writing the set of equations in the form of (2.51), we
have

X 0.8 0 -04  02||x
y =40.75;-1025 0 05|51y E1D)
Z)y 1425 025 05 0 )
X 0
Assuming the initial approximation <y =<0:and substituting into Eq.(E.1) gives our first approximation
z], 0
to the solution. Hence
X 0.8 0 -04 0.2(]|0.8
yir =40.75:-1025 0 -0.5(70.75 E2)
Z 4.25 025 05 0 ]|425],

2

The process is continued until successive values of each vector are very close in magnitude. Here, the
eleven iterations obtained accurate to two decimal places are shown below in Table E2.20.



64 // Numerical Methods //

Table E2.20

Variable | 1 2 3 4 5 6 7 8 9 10
X 08 [025|1.14]124]1.02|092|098 ]| 1.02]| 1.01 |0.99
y 0.75 | 2.68 | 253 | 1.89 | 1.79 | 1.99 | 2.07 | 2.02 | 1.98 | 1.99
z 425 13.68 1285]270[299]3.10)3.02 297|298 | 3.01

W DN = | =

Hence, the solution is given by x =1, y =2 and z = 3.

211 GAUSS-SEIDAL ITERATION METHOD

The Gauss-Seidal method is applicable to predominantly diagonal systems. A predominantly diagonal system
has large diagonal elements. The absolute value of the diagonal element in each case is larger than the sum
of the absolute values of the other elements in that row of the matrix A. For such predominantly diagonal
systems, the Gauss-Seidal method always converges to the correct solution, irrespective of the choice of the
initial estimates. Since the most recent approximations of the variables are used while proceeding to the next
step, the convergence of the Gauss-Seidal method is twice as fast as in Jacobi’s method. The Gauss-Seidal
and Jacobi’s methods converge for any choice of the initial approximations, if in each equation of the system,
the absolute value of the largest coefficient is greater than the sum of the absolute values of the remaining
coefficients. In other words,

< i=1,2,3,....n

where the inequality holds in case of at least one equation. Convergence is assured in the Gauss-Seidal
method if the matrix A is diagonally dominant and positive definite. If it is not in a diagonally dominant form,
it should be connected to a diagonally dominant form by row exchanger, before starting the Gauss-Seidal
iterative scheme.

Gauss-Seidal method is also an iterative solution procedure which is an improved version of Jacobi’s
method. The method is also known as the method of successive approximations.
Consider the system of linear simultaneous equations
ayxy + apx; + a;3x; = by
ay Xy + apx; + axx; = by
az1x; + aspxy + dzzxz = b3 (254)
If the absolute value of the largest coefficient in each equation is greater than the sum of the absolute values
of all the remaining coefficients, then the Gauss-Seidal iteration method will converge. If this condition is not

satisfied, then Gauss-Seidal method is not applicable. Here, in Eq.(2.54), we assume the coefficient a;, a
and as; are the largest coefficients.

We can rewrite Eq.(2.54) as

1

X =—(by — appxy — apxz)
apy
1

Xy =——(by — a1 x; — axxs)

1))
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1
X3 = —— (b3 — azix; — anx,) (2.55)
as3

Let the initial approximations be x{) , xg and xé) respectively. The following iterations are then carried out.

Iteration 1: The first improvements of X X, and X, are obtained as

_ . 0
= (bl —dapXy —a13X%3 )
a1
_ 0
X1 = (bz —dy X — A3 )
ay
X31 = P (b3 —a31N —a32x21) (2.56)
33

Iteration 2: The second improvements of x;, x, and x5 are obtained as

Xy =— (b — appxyy — ap3xay)
ap
Xpy =——(by — ap1x12 — ax3x31)
ay)
1
X3 = (b3 — azixyp — azxxn) (257)
33

The above iteration process is continued until the values of x;, x, and x5 are obtained to a pre-assigned or

desired degree of accuracy. In general, the initial approximations are assumed as xlo = (2) = xg =0 . Gauss-

0
2

method is found to be twice to that of Jacobi’s method. Like the Jacobi’s method, Gauss-Seidal method can

Seidal method generally converges for any initial values of xf) , X xg) . The convergence rate of Gauss-Seidal

also be extended to n linear simultaneous algebraic equations in # unknowns.

Example E2.21
Solve the following equations by Gauss-Seidal method.
8x+2y-2z7= 8
x—-8y+3z=-4
2x+y+9z =12
Solution:
In the above equations:
181> 121 + 1 -2
[ 81> 111+ 13|
91 > 121 + 11

So, the conditions of convergence are satisfied and we can apply Gauss-Seidal method. Then we rewrite the
given equations as follows:
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1
x, =—(d, —by’ —¢,2%)
a

1
n=—d,~ax _0210)
b,
1
= —(d3 —az X _b3y1)
%]
Let the initial approximations be:
W=y0=0=0

Iteration 1:
d
:_1: 8 _10
a 8
1 1
: —(dy —a,x) = —(-4-1x1.0) = 0.625
bz _8
1 1
= —(dy=asn —byy) = 5 (12-2) = 2x1.0-1x0.625) = 1.042
3
Iteration 2:
1 1
[x]= —(dy = by —67) = (8-2x0.625- (-2)x1.042) = 1.104
1
1 1
= (dy—ayxy —¢y7) = —o(~4=1x1.104-3x1.042) = 1.029
2

1 1
= —(d; ~ayxy ~byyy) = 5 (12-2x1.104-1x1.029) = 0.974
]

Iteration 3:

A é(8—2x1.029— (~2)% 0.974) = 0.986
a
1 1
= (=t — ) = — (-4 -1x0.986 -3 0.974) = 0.989
] _
1 1
[23]= —(dy —ayx; = byys) = 5 (12-2x0.986-1x0.989) = 1.004
G
Iteration 4:
= %(8— 2x0.989 — (=2) x1.004) = 1.004
1
= —5 (-4-1x1.004-3x1.004) = 1.002

1
= —(12-2%1.004—1x1.002) = 0.999
9
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Iteration 5:

1

= S (8-2x1.002-(-2)x0.999) = 0.999
1

[ys]= —g(~4-1x0999-3x0999) = 1.0

=é(12—2><0.999—1><1.0) ~1.0

Iteration 6:

1
=§(8—2><1+2><1)=
=_i8(—4—1><1.0—3><1.0)=
=é(12—2><1.0—1><1.0)=

Example E2.22

Using the Gauss-Seidal method solve the system of equations correct to three decimal places.

x+2y+z=0

3x+y-z=0

x—y+4z =3
Solution:

Rearranging the given equations to give dominant diagonal elements, we obtain

3x+y-z=0
x+2y+z=0
xX-y+4z=3
Equation (E.1) can be rewritten as
x=(@z-y3
y =—(x+2)/2

z2=0C+x+y2

Writing Eq.(E.2) in the form of Gauss-Seidal iterative scheme, we get

x0T+ = (20 —y ™73
YO+ = _ (x+D _ )2
Z(r+1) — (3 _ x(r+D) ¢ y(r+1))/4
We start with the initial value
X0 = yO = ;0 = |
The iteration scheme gives
D=0 —yOy3 =(1-1)/3=0
YD = (=D - z20y2 = (0-1)2=-0.5
=3 - xD +yWy4 = (3-0-0)4=0.625

(E.1)

(E2)
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The second iteration gives
X2 = (20 — yMy/3 = (0.625 + 0.5)/3 = 0.375
Y = (=@ - z0)/2 = (- 0.375 - 0.625)/2 = -0.50
7@ =G - X +yP)4 = (3-0.375-0.5)/4 =0.53125
Subsequent iterations result in

x¥=0.34375 y=-0.4375 7?9=0.55469
x%=0.33075 yW=-0.44271 7% =0.55664
x®=0.33312 ¥ =—0.44488 79 =0.5555
x©=0.33346 y®=-0.44448 729=0.55552
Hence, the approximate solution is as follows:
x=0.333 y=-0.444 z=0.555
Example E2.23
Solve the following equations by the Gauss-Seidal method.
dx-y+z=12
-x+4y-2z=-1
x—=2y+4z =5

Solution:

The iteration formula is

n

X, e b= A | - 1,2,..,n

A; J=1
<]¢l
1
Hence X = 2(124.);_2)
_1 )
y = 4(— +x+272)
z= 4( - x+2y)

Choosing the starting values x = y = z = 0, we have the first iteration

1
7(12+0-0)=3

X =
1
y= 71 +3+20]1=05
1
z=—[5-3+20.5) =075

4
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The second iteration gives

1
x=7 (12 + 0.5 -0.75) =2.9375
1
y=7 [-1 +2.9375 + 2(0.75)] = 0.8594

1
z= Z(S —2.9375 + 2(0.8594)] = 0.9453

The third iteration yields

[12 + 0.8594 — 0.9453] = 2.9785

Bl= b=

[-1 +2.9785 + 2(0.9453)] = 0.9673

1
=7 (5—-2.9785 + 2(0.9673)] = 0.9890

After five more iterations, we obtain the final values for x, yand zasx =3, y=1and z = 1.

2,12 SUMMARY

A matrix is a rectangular array of elements, in rows and columns. The elements of a matrix can be numbers,
coefficients, terms or variables. This chapter provided the relevant and useful elements of matrix analysis for
the solution of linear simultaneous algebraic equations. Topics covered include matrix definitions, matrix
operations, determinants, matrix inversion, trace, transpose, and system of algebraic equations and solution.
The solution of n linear simultaneous algebraic equations in n unknowns is presented. There are two classes
of methods of solving system of linear algebraic equations: direct and iterative methods. Direct methods
transform the original equation into equivalent equations that can be solved more easily. Iterative or indirect
methods start with a guess of the solution x, and then repeatedly refine the solution until a certain convergence
criterion is reached. Six direct methods (matrix inversion method, Gauss elimination method, Gauss-Jordan
method, Cholesky’s triangularisation method, Crout’s method and Thomas algorithm for tridiagonal system)
are presented. Two indirect or iterative methods (Jacobi’s iteration method and Gauss-Seidal iteration method)
are presented.

The LU decomposition method is closely related to Gauss elimination method. LU decomposition is
computationally very effective if the coefficient matrix remains the same but the right hand side vector changes.
Cholesky’s decomposition method can be used when the coefficient matrix A is symmetric and positive definite.
Gauss-Jordan method is a very stable method for solving linear algebraic equations. Gauss-Seidal iterative
substitution technique is very suitable for predominantly diagonal systems. It requires a guess of the solution.

Problems
2.1 Determine the inverse of the following matrices:
-1 1 2
(@) A=| 3 -1 1

-1 3 4
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1 2 o0
(b) A=[3 -1 =2
1 0 -3
(10 3 10
(©) A= 8 2 9
|8 1 -10
1 2 3
(d) A=|4 5 6
7 00
1 1
(@ A=[1 2 2
1 3
(1 0 3
€3] A=|2 1 -1
1 -1 1

2.2 Solve the following set of simultaneous linear equations by the matrix inverse method.

(a) 2x+3y—-z =-10
—x+4y+2z = 4
2x=2y+5z = 35
(b) 10x+3y+10z = 5
8x-2y+9z = 2
8x+y—-10z = 35

(o) 2x+3y—-z =
—x+2y+z = 8
x—-3y-2z =-13

) 2x-y+3z = 4

x+9y-2z = -8
4x-8y+ 11z = 15

(e) X1—Xp+3x3—x4 = 1
X —3x3+5x4 = 2

Xi—x3+x4 = 0

X1 +2x—x4 = -5

H X1+ 2% +3x3+4x4 = 8
22X —2X —X3—X4 = 3

xXp—=3x% +4x3—4x4 = 8

2X1 + 2X2 - 3X3 + 4.X4 = 2
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2.3 Solve the following set of simultaneous linear equations using the method of Gaussian elimination.

(a) 2x+y-3z = 11
4x-2y+3z = 8

-2x+2y-z = -6

) 6x+3y+6z = 30
2x4+3y+3z = 17

x+2y+2z = 11

(o) 26 +x+x3 = 4
3%, -3x3 = 0

Xy +2x3 = 1

() X1+ 2% +3x3+4xy = 8
2x1 — 2%y —x3— X4 = -3

X —3x% +4x3—4x4 = 8

2x1 + 2 —3x3 +4x, = 2

(e) 2x1+ X +x3—-x4 = 10
X;+ 5% —S5x3+6x4 = 25
~TIx;+3x—Tx3—5x4, = 5

X =5x +2x3+ x4y = 11

H Xi+X+x3+x4 = 3
2x1—x+3x3 = 3

2% +3x4 = 1

—X1+2x3+x4 = 0

2.4 Solve the following set of simultaneous linear equations by the Gauss-Jordan method.
(a) 4x — 3y + 5z
2x-y-z = 6

x+y+4z = 15

[
r

(b) 2x-y+z = -1

3x+3y+9z = 0

3x+3y+5z = 4

(© x+y-z = 1

x+2y-2z = 0

2x+y+z = 1

@) x-y = 2

2x+2y-z = -1

y-2z = 6

(e) x+y+z = 3
2x+3y+z =

x—-y-z = -3
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H 4x; — 2x5 — 3x3 + 6x4 12
—S5x; 4+ 7xy + 6.5x3 —6x, = 6.5

X1 + 7.5x; + 6.25x3 + 5.5x4 16

—12x; + 22x, + 15.5x3 —x4 = 17

2.5 Solve the following set of simultaneous linear equations by the Cholesky’s factorisation method.

(a) 2x-y = 3
—x+2y-z = 3

-y+z = 2

() x+y+z = 7
3x+3y+4z = 23

2x+y+z = 10

() x+05y = 1
05x+y+05z = 2

05y+z = 3

(d) 2x+3y+z = 9
x+2y+3z = 6

3x+y+2z = 8

(e) x=2y+z = 2
S5x+y-3z = 0

3x+4y+z = 9

H 121 = 6xp —6x3 + 1.5x4 = 1
—6X1+4X2+3X3+0.5X4 = 2
—6X1+3XZ+6X3+1.5)C4 = 3
—1.5x;+05x+ 1.5 +x, = 4

2.6 Solve the following set of simultaneous linear equations using the Crout’s method.

(a) 2x+y = 17
x+2y = 5

) x+2y+7z = 4
2x+3y+z = 5

3x—4y+z = 7

(o) x+y+z = 09

2x-3y+4z = 13
3x+y+5z = 40

() 3x+y = -1
2x+4y+z = 7

2y+5z2 = 9

(e) 2x+y-z = 6

x-3y+5z = 11
—x+5y+4z = 13
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€3] 2x1 — X

X1+ 2% —x3 =

—Xy + 2)(3 — X4 =

—X3 + 2.X4

_—0 O

2.7 Solve the following tridiagonal system of equations using the Thomas algorithm.

(a) 2x1 + X,
—X1 + 2)(2 + X3
3.XZ + 2X3

(b) 2x 1+ X

3)(1 + 2X2+ X3 =

Xy + 2)C3+ 2.X4

X3 + 4xy

@) 3x1—xp =
2X1 — 3.XZ + 2.X'3 =

Xy + 2x3 + Sxy

X3 — X4

(d) 2.X1+.XZ =
X1+ 3x+x3 =

Xy + X3 + 2X4

2.X'3 + 3X4

(e 2%+ xp =
3.X1 + 2X2 + X3 =
Xy + 2.X'3 + 2.X4 =

X3 + 4xy

6d) 2x1 = X

.X1+3.XZ+.X3 =

Xo+ X3+ 2x4 =

2.X3 + 3)(4

-1

2.8 Solve the following set of simultaneous linear equations using the Jacobi’s method.

(a) 2x—y+ 5z
2x+y+2z
x+3y+z

) 20x +y—2z

3x+20y -z
2x — 3y + 20z

) Sx+2y+z2
x+4dy+2z
X+2y+5z

15
7
10

17
-18
25
12

15
20
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(d) 10x—y+2z = 6
—x+1ly+z = 2
2x-y+ 10z =-10

(e) 8x+2y—-2z = 8
x—-8 +3z = 4

2x+y+92 = 12

H 10x;+x%+2x3 = 6
X1+ 1lx, —x3+3x4 = 25

2x1 =% + 10x3—x4 = -1

3%, —x3+8x4 = 15

2.9 Solve the following system of simultaneous linear equations using the Gauss-Seidal method.

(a) 4x-3y+5z = 34
2x-y-z = 6
z+y+4z = 15
) 2x—y+5z = 15

2x+y+z = 7
x+3y+z = 10
(©) 15x+3y-2z = &
2x+10y+z = 51
x—-2y+82 = 5

(d) 1Ox1 - 2)(?2 —X3—X4 = 3
—le + 10X2 —X3— X4 = 15
—X]1—Xp + 10X3—2X4 = 27
X1 =X —2x3+ 10xy = -9
(e) dx; +2xy =

4
2%+ 8x+2x; = 0

2% +8x3+2x3 = 0

2x3+4x4 = 0

H 4x1+2x = 4
2x1+8x +2x3 = 0

2% +8x3+2x; = 0

2x3 +4xy = 14

ONORO)



CHAPTER

Solution of Algebraic and
Transcendental Equations

3.1 INTRODUCTION

One of the most common problem encountered in engineering analysis is that given a function f (x), find
the values of x for which f (x) = 0. The solution (values of x) are known as the roots of the equation f (x) = 0,
or the zeroes of the function f (x).

The roots of equations may be real or complex. In general, an equation may have any number of (real)
roots, or no roots at all. For example, sin x — x = 0 has a single root, namely, x = 0, whereas tan x — x = 0 has
infinite number of roots (x = 0, £4.493, +7.725, ...). There are two types of methods available to find the
roots of algebraic and transcendental equations of the form f (x) = 0.

1. Direct Methods: Direct methods give the exact value of the roots in a finite number of steps. We
assume here that there are no round off errors. Direct methods determine all the roots at the same time.

2. Indirect or Iterative Methods: Indirect or iterative methods are based on the concept of successive
approximations. The general procedure is to start with one or more initial approximation to the root and
obtain a sequence of iterates (x;) which in the limit converges to the actual or true solution to the root.
Indirect or iterative methods determine one or two roots at a time.

The indirect or iterative methods are further divided into two categories: bracketing and open methods.
The bracketing methods require the limits between which the root lies, whereas the open methods require
the initial estimation of the solution. Bisection and False position methods are two known examples of the
bracketing methods. Among the open methods, the Newton-Raphson and the method of successive
approximation are most commonly used. The most popular method for solving a non-linear equation is the
Newton-Raphson method and this method has a high rate of convergence to a solution.

In this chapter, we present the following indirect or iterative methods with illustrative examples:

1. Bisection Method

2. Method of False Position (Regular Falsi Method)
3. Newton-Raphson Method (Newton’s method)
4

Successive Approximation Method.
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3.2 BISECTION METHOD

After a root of f(x) = 0 has been bracketed in the interval (a, b). Bisection method can be used to close in
on it. The Bisection method accomplishes this by successfully halving the interval until it becomes
sufficiently small. Bisection method is also known as the interval halving method. Bisection method is not
the fastest method available for finding roots of a function, but it is the most reliable method. Once a has
been bracketed, Bisection method will always close in on it.

We assume that f(x) is a function that is real-valued and that x is a real variable. Suppose that f (x) is
continuous on an interval a < x < b and that f (a) f (b) < 0. When this is the case, f (x) will have opposite
signs at the end points of the interval (a, b). As shown in Fig. 3.1 (@) and (b), if f (x) is continuous and has
a solution between the points x = a and x = b, then either f(a) > 0 and f (b) < 0 or f(a) <0 and f(b) > 0. In
other words, if there is a solution between x = a and x = b, then f (a) f (b) < 0.

yu VA

True solution

a
t
|
|

True solution f(lb) <0

Fig. 3.1: Solution of f(x) = 0 between x =aand x = b

The method of finding a solution with the Bisection method is illustrated in Fig. 3.2. It starts by finding
points a and b that define an interval where a solution exists. The midpoint of the interval X, is then taken
as the first estimate for the numerical solution. The true solution is either in the portion between points a
and x,,, or in the portion between points x; . and b. If the solution obtained is not accurate enough, a new
interval that contains the true solution is defined. The new interval selected is the half of the original interval
that contains the true solution, and its midpoint is taken as the new (second) estimate of the numerical
solution. The procedure is repeated until the numerical solution is accurate enough according to a certain
criterion that is selected.

The procedure or algorithm for finding a numerical solution with the Bisection method is given below:

Algorithm for the Bisection Method
1. Compute the first estimate of the numerical solution x; by

a+b
X, =
! 2
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True sQlution

O 4+————

First estimate
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Fig. 3.2: Bisection method
2. Determine whether the true solution is between a and X; or between x; . and b by checking the sign of
the product

F@f(x, )
Iff(a)f (xsl) < 0, the true solution is between a and X,
Iffa)f(x l) > 0, the true solution is between Xs, and b.

If b — ¢ < €, then accept c as the root and stop. € is the error tolerance, € > 0.

3. Choose the subinterval that contains the true solution (a to X;, OF X to b) as the new interval (a, b),
and go back to step 1.

Steps 1 through 3 are repeated until a specified tolerance or error bound is attained.

3.2.1 Error Bounds

Let a,, b, and c, denote the n computed values of a, b and X, respectively. Then, we have

1
bn+1 —dpyl = E(bn - an) nzl (31)
1
also by =ay = 2oy (b - a) n>1 (32)

where (b — a) denotes the length of the original interval with which we started.
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Since the root x; is in either the interval (a,, c,) or (c,, b,), we know that

1
x;—cl<c,—-a,=b,—c,= 5 b, - a,) 3.3)

This is the error bound for ¢, that is used in step 2 of the algorithm described earlier.
From Egs. (3.2) and ( 3.3), we obtain the further bound

lx,—c, < 2%(19 -a) (34)

Equation (3.4) shows that the iterate ¢, converges to x; as n — oo,
To find out how many iterations will be necessary, suppose we want to have

x, —c,l <€

This will be satisfied if

2%(19 —a)<e€ (3.5)

Taking logarithms of both sides of Eq.(3.5), and simplifying the resulting expression, we obtain

=

log| —

n z% (3.6)
0g

There are several advantages to the Bisection method. The method is guaranteed to converge. The method
always converges to an answer, provided a root was bracketed in the interval (a, b) to start with. In addition,
the error bound, given in Eq. (3.4), is guaranteed to decrease by one-half with each iteration. The method
may fail when the function is tangent to the axis and does not cross the x-axis at f (x) = 0. The disadvantage
of the Bisection method is that it generally converges more slowly than most other methods. For functions
f(x) that have a continuous derivative, other methods are usually faster. These methods may not always
converge. When these methods do converge, they are almost always much faster than the Bisection method.

Example E3.1
Use the Bisection method to find a root of the equation x3 — 4x — 8.95 = 0 accurate to three decimal places
using the Bisection method.
Solution:
Here, f) =x3-4x-895=0
fQ =23-4(2)-895=-895<0
fB) =33-4(3)-895=6.05>0
Hence, a root lies between 2 and 3.

f'(x) =3x% -4 > 0 for x in the interval (2, 3). Hence, we have a = 2 and b = 3. The results of the algorithm
for Bisection method are shown in Table E3.1.
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Table E3.1: Bisection Method Results

n a b X,, b-x, f(x,)
112 3 2.5 0.5 -3.25
2125 3 2.75 0.25 0.84688
3125 2.75 2.625 0.125 -1.36211
4 1 2.75 2.625 2.6875 -0.0625 -0.28911
51275 2.6875 2.71875 | -0.03125 0.27092
6 | 2.6875 2.71875 | 2.70313 0.01563 | —0.01108
71271875 | 270313 | 2.71094 | —0.00781 0.12942
8 | 2.71875 | 2.71094 | 2.71484 | —-0.00391 0.20005
9 | 271094 | 2.71484 | 2.71289 0.00195 0.16470

10 | 2.71094 | 2.71289 | 2.71191 0.00098 0.14706

11 | 2.71094 | 2.71191 | 2.71143 0.00049 0.13824

Hence the root is 2.711 accurate to three decimal places.

Example E3.2

Find one root of e* — 3x = 0 correct to two decimal places using the method of Bisection.

Solution:
Here, fx) =e*—3x

f(15) = e'5-3(1.5) =-0.01831

f(1.6) = €'6—3(1.6) =0.15303
f'(x) =e*—3>0 for x in the interval (1.5, 1.6). Hence, a root lies in the interval (1.5, 1.6). Therefore, here we
have a = 1.5 and b = 1.6. The results of the algorithm for Bisection method are shown in Table E3.2.

Table E3.2: Bisection Method Results

n a b X,, b-x, f(x, )

1115 1.6 1.55 0.05 0.06147
2115 1.55 1.525 0.025 0.02014
3115 1.525 1.5125 | 0.0125 0.00056
4 (1.5 1.5125 | 1.50625 | 0.00625 | —-0.00896
51 1.50625 | 1.5125 | 1.50938 | 0.00313 | —0.00422
6 | 1.50938 | 1.5125 | 1.51094 | 0.00156 | —0.00184

Hence the root of f(x) = 0 is x = 1.51 accurate up to two decimal places.

Example E3.3

Determine the largest root of f(x) = x® — x — 1 = 0 accurate to within € = 0.001. Use the Bisection method.

Solution:

Here fx) =x0-x-1=0
F) =16-1-1=-1
fQ) =26-2-1=61
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Since f (1) f(2) <0, f(x) = 0 has at least one root on the interval. The results of the algorithm for Bisection
method are shown in Table E3.3.

Table E3.3: Bisection Method Results

n a b X, b-x f(x, )
11 2 1.5 0.5 8.89063
211 1.5 1.25 0.25 1.56470
311 1.25 1.25 0.125 -0.09771
4 | 1.125 1.25 1.1875 | 0.0625 0.61665
51 1.125 1.1875 1.15625 | 0.03125 0.23327
6| 1.125 1.15625 | 1.14063 | 0.01563 0.06158
71 1.125 1.14063 | 1.13281 | 0.00781 | —0.01958
8 | 1.13281 | 1.14063 | 1.13672 | 0.00391 0.02062
9| 1.13281 | 1.13672 | 1.13477 | 0.00195 0.00043

10 | 1.13281 | 1.13477 | 1.13379 | 0.00098 | —0.00960

3.3 METHOD OF FALSE POSITION

The method of False Position (also called the Regular Falsi method, and the linear interpolation method)
is another well-known bracketing method. It is very similar to Bisection method with the exception that it
uses a different strategy to end up with its new root estimate. Rather than bisecting the interval (a, b), it
locates the root by joining f(a;) and f (b;) with a straight line. The intersection of this line with the x-axis
represents an improved estimate of the root.

f(X)“

Actual
solution

Fig. 3.3: Method of false position

Here again, we assume that within a given interval (a, b), f (x) is continuous and the equation has a
solution. As shown in Fig. 3.3, the method starts by finding an initial interval (a,, b;) that brackets the solution.
f(ay) and f (b;) are the values of the function at the end points a; and b;. These end points are connected
by a straight line, and the first estimate of the numerical solution, X;, is the point where the straight line
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crosses the axis. For the second iteration, a new interval (ay, b,) is defined. The new interval is either (ay, x,)

1
where a, is assigned to a, and X, to by or (X, by) where x;, is assigned to a, and b, to b,. The end points
of the second interval are connected with a straight line, and the point where this new line crosses the x-axis
is the second estimate of the solution, X;. A new subinterval (a3, b3) is selected for the third iteration and
the iterations will be continued until the numerical solution is accurate enough.

The equation of a straight line that connects points (b, f (b)) to point (a, f (a)) is given by
_JS)-fla)
y=2"2 L

b-a

The points x; where the line intersects the x-axis is determined by substituting y = 0 in Eq.(3.7) and solving
the equation for x.

(x=b)+ f(b) 3.7

L =af®)=bfla)
)~ fa

The procedure (or algorithm) for finding a solution with the method of False Position is given below:

Hence (3.8)

Algorithm for the method of False Position

1. Define the first interval (a, b) such that solution exists between them. Check f (a) f (b) < 0.

2. Compute the first estimate of the numerical solution x, using Eq.(3.8).

3. Find out whether the actual solution is between a and X, or between Xx; and b. This is
accomplished by checking the sign of the product f (a) f (X;).
If f (@) f (X;) <0, the solution is between a and X
If f (a) f (X;) > 0O, the solution is between X, and b.

4.  Select the subinterval that contains the solution (a to X, Or X, to b) is the new interval (a, b) and
go back to step 2. Step 2 through 4 are repeated until a specified tolerance or error bound is attained.
The method of False Position always converges to an answer, provided a root is initially bracketed
in the interval (a, b).

Example E3.4

Using the False Position method, find a root of the function f (x) = ¢* — 3x2 to an accuracy of 5 digits. The
root is known to lie between 0.5 and 1.0.

Solution:
We apply the method of False Position with a = 0.5 and b = 1.0. Equation (3.8) is

L _af®)-bf@
T O f@
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The calculations based on the method of False Position are shown in the Table E3.4.

Table E3.4
n a b f(a) f(b) X, f(x, ) &
Relative error
1]0.5 1] 0.89872 | —0.28172 | 0.88067 | 0.08577 | —
2| 0.88067 | 1] 0.08577 | —-0.28172 | 0.90852 | 0.00441 | 0.03065
31090852 | 1 |0.00441 | —0.28172 | 0.90993 | 0.00022 | 0.00155
410.90993 | 1 | 0.00022 | —0.28172 | 0.91000 | 0.00001 | 0.00008
510.91000 | 1 | 0.00001 | -0.28172 | 0.91001 | O 3.7952 x 10°
The relative error after the fifth step is (%) = 3.7952 x 1075, The root is 0.91 accurate to five
digits.
Example E3.5

Find a real root of cos x — 3x + 5 = 0. Correct to four decimal places using the method of False Position
method.
Solution:
Here f(x) =cosx-3x+5=0
fO) =cos0-30)+5=5>0

COST o -3n
2) = =3 —[+5=—-+5<0
s = -y 2s==3

Therefore, a root of f(x) = 0 lies between 0 and /2. We apply the method of False Position with a = 0 and
b = m/2. Equation (3.8) is

L =af®)-bfla)
Y- f@

The calculations based on the method of False Position are shown in Table E3.5.

Table E3.5
n a b f(a) f(b) X, f( X, ) £
110 1.5708 | 6 0.28761 | 1.64988 | —0.02866 | —
21 1.64988 | 1.5708 | —0.02866 | 0.28761 | 1.64272 | —0.00001 | —0.00436
3] 1.64272 | 1.5708 | —0.00001 | 0.28761 | 1.64271 0 -1.97337 x 10°

The relative error after the third step is

_ 1.64271-1.64272
- 1.64271
The root is 1.6427 accurate to four decimal places.
Example E3.6

Using the method of False Position, find a real root of the equation x* — 11x + 8 = 0 accurate to four decimal
places.

=-1.97337 x 10°¢
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Solution:
Here fx) =x*-11x+8=0

FO =1*-11(1)+8=-2<0

f@ =2¢-112)+8=4>0
Therefore, a root of f(x) = 0 lies between 1 and 2. We apply the method of False Position with a = 1 and
b = 2. Equation (3.8) is

X, = af®b)-bf(a)
f(b)-f(a)

The calculations based on the method of False Position are summarised in Table E3.6.

Table E3.6
n a b f(a) f(b) X, f(x,) &
1)1 212 2 1.5 -3.4375 | —
215 234375 | 2 | 1.81600 | —1.9895 | 0.17405
31 1.81609 | 2 | —1.09895 | 2 1.88131 | —0.16758 | 3.4666 x 107
41 1.88131 | 2 | -0.16758 | 2 1.89049 | —0.02232 | 4.85383 x 107>
51 1.89049 | 2 | -0.02232 | 2 1.89169 | —0.00292 | 6.3902 x 10~*
6| 1.89169 | 2 | -0.00292 | 2 1.89185 | —0.00038 | 8.34227 x 107
71 1.89185 | 2 | -0.00038 | 2 1.89187 | —0.00005 | 1.08786 x 107

The relative error after the seventh step is

- 1.89187-1.89185
B 1.89187

Hence, the root is 1.8918 accurate to four decimal places.

34 NEWTON-RAPHSON METHOD

The Newton-Raphson method is the best-known method of finding roots of a function f (x). The method is
simple and fast. One drawback of this method is that it uses the derivative f'(x) of the function as well as the
function f (x) itself. Hence, the Newton-Raphson method is usable only in problems where f'(x) can be readily
computed. Newton-Raphson method is also called Newton’s method. Here, again we assume that f(x) is
continuous and differentiable and the equation is known to have a solution near a given point. Figure 3.4
illustrates the procedure used in Newton-Raphson method. The solution process starts by selecting point x;
as the first estimate of the solution. The second estimate x, is found by drawing the tangent line to f(x) at
the point (x;, f (x1)) and determining the intersection point of the tangent line with the x-axis. The next estimate
X3 is the intersection of the tangent line to f(x) at the point (x,, f(x,)) with the x-axis, and so on. The slope,
f'(x1), of the tangent at point (x;, f (x;)) is written as

_ f(xl)_o

X~ X

= 1.08786 x 107

f(x) (3.9)
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Rewriting Eq.(3.9) for x, gives

%y = —L ) 3.10
2= ; .
£/) .10)
Equation (3.10) can be generalised for determining the next solution x; ,  from the current solution x; as
o= — S(x)
i+ = X () 3.11)

Slope: f'(x1)

Solution

L R

A
=

Slope: f'(x3) Slope: f'(x2)
Fig. 3.4: Newton-Raphson method

The solution is obtained by repeated application of the iteration formula given by Eq.(3.11) for each successive
value of ‘i’.

Algorithm for Newton-Raphson Method:
1. Select a point x; as an initial guess of the solution.
2. Fori=1,2, ..., until the error is smaller than a specified value, compute x; ,; by using Eq.(3.11).
Two error estimates that are generally used in Newton-Raphson method are given below:

X:1 — X:
The iterations are stopped when the estimated relative error #l_~lis smaller than a specified value €.
Xi
Xiv1 —Xi
—— <€
X 3.12)

The iterations are stopped when the absolute value of f (x;) is smaller than some number d:

L)l <0 3.13)
The Newton-Raphson method, when successful, works well and converges fast. Convergence problems occur
when the value of f'(x) is close to zero in the vicinity of the solution, where f (x) = 0. Newton-Raphson

method generally converges when f (x), f'(x) and f "(x) are all continuous, if f'(x) is not zero at the solution
and if the starting value x; is near the actual solution.
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3.4.1 Convergence of Newton-Raphson Method
The Newton-Raphson iteration formula is given by

f(x)

Xig1 = X, L) =0(x,) (3.13a)
The general form of Eq.(3.13a) is given by
x=0(x) (3.13b)
The Newton-Raphson iteration method given by Eq.(3.13b) converges if 1¢'(x)l < 1.
f(x,')
H = x—L 07
ere o(x)=x (o)
’ 2 ” ”
Hence ¢%x):1_{Lf(xﬂ /0 Oﬁ}:f(mf 6
[f (0] Lf (0]
or |¢un{19¥1%1
Lf (0]

Hence, Newton-Raphson’s method converges if

<1

yﬂmf%m
£/ (0
or Lf ) £l < [f00)? (3.13¢)

If o denotes the actual root of f (x) = 0, then we can select a small interval in which f(x), f’(x) and f”(x) are
all continuous and the condition given by Eq.(3.13c) is satisfied. Therefore, Newton-Raphson method always
converges provided the initial approximation x is taken very close to the actual root o.

3.4.2 Rate of Convergence of Newton-Raphson Method

Let o denotes the exact value of the root of f(x) = 0, and let x;, x; ,;, be two successive approximations to
the actual root o. If €; and €, are the corresponding errors, we have

xi=a+¢€; and Xx; . =0 + €4

by Newton-Raphson’s iterative formula

O+ €= 0+ € —M

foteg)
fla+¢g)
S —&T T
fla+e)

e?
fl) +¢€; f’(oc)+(2’] F7 o)+ -
or €= —

fll+e f7(0)+--
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2
& F@+ S f @t
=g - FTe T (since f (o) = 0)

’ ei ”
€ {f (oc)+7f (o) + }_ 1{ & (o) }

i fla)y+e f7 o)+ _E fo+e; f7(o)+-
_1 € [ I )
” S+l P
? f’(oc)[1+ i ,(O‘)jJr... 2/ (3.13d)
()

Equation (3.13d) shows that the error at each stage is proportional to the sequence of the error in the previous
stage. Hence, Newton-Raphson method has a quadratic convergence.

Example E3.7

Use Newton-Raphson method to find the real root near 2 of the equation x* — 11x + 8 = 0 accurate to five
decimal places.

Solution:
Here f) =x*—11x+8
flox) =43 - 11

Xo =2

and flxo) =fQ)=24-11Q2)+8=2
') =f1(2) =42 -11=21

Therefore,

PP AC. . 1.90476

TS R The

4 —
o= - f,(xl) 190476 - (1.90476) 11(13.90476)+8 189200
f(x) 4(1.90476)° —11
4 —
N _&z 1.89200 (1.89209) 11(13.89209)+8 180188
f(x) 4(1.89209)° —11
4 —
o= f’(x3) :1.89188_(1.89188) 11(13.89188)+8 180188
f(x3) 4(1.89188)° —11

Hence the root of the equation is 1.89188.
Example E3.8

Using Newton-Raphson method, find a root of the function f(x) = ¢* — 3x2 to an accuracy of 5 digits. The
root is known to lie between 0.5 and 1.0. Take the starting value of x as xy = 1.0.
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Solution:

Start at x, = 1.0 and prepare a table as shown in Table E3.8, where f (x) = ¢* — 3x? and f'(x) = ¢* — 6x. The

relative error

X =X
x; +1

£ =

The Newton-Raphson iteration method is given by

G}
i+1 i f,(xi)
Table E3.8
i Xi f(x;) f'(x;) Xit1 12
0|1.0 -0.28172 | -3.28172 | 0.91416 | 0.09391
11091416 | -0.01237 | —=2.99026 | 0.91002 | 0.00455
21 0.91002 | -0.00003 | —2.97574 | 0.91001 | 0.00001
31091001 | O -2.97570 | 0.91001 | 6.613 x 107"

Example E3.9

Evaluate v/29 to five decimal places by Newton-Raphson iterative method.
Solution:
Let x = /29 then x2 - 29 = 0.

We consider f(x) = x2 — 29 = 0 and f(x) = 2x

The Newton-Raphson iteration formula gives

X _X—f(Xi)_.x_Xiz_zg_lX'Fg
i+l i f,(-x,') i 2Xi 2 i X (El)

1

Now f(5)=25-29=-4<0and f(6)=36-29=7>0.
Hence, a root of f (x = 0) lies between 5 and 6.

Taking x; = 3.3, Equation (E.1) gives

1 29
x = —(53 +—) =5.38585

2 5.3
x —1(5 38585 + 538516
27\ 5.38585)
v = 538516+ =5.38516
3Tl 5.38516)

Since X,=x,upto five decimal places, \/ﬁ =5.38516.
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3.4.3 Modified Newton-Raphson Method

Here, the iteration scheme is written as

. f(xi) _
Xiy1 = X P +ato)f(x) d(x;) (say) (3.13e)
_ f(x)
. ) = e F ()

where a(x) is a smooth function.

[ L SOOS (x4 a) )AL+ a"(x0) f () +a(x) f1(x))

Consid ‘) =1- 3.13
onsider 0'(x) ot am ) (et anf P (3.131)
and 0" (x) = — 7 (x) 42 F O f7(x+alx) f)+ a/(x)fz(x) +a(x) f'(x)]
fi(x+a(x) f(x) [f'(x+a(x) f(x))]
L SO+ a) fE)PI+a (0. )+ at) f (@)
[f/(x+a(x) f ()
+ FEf7(x+a) f )1 +a’ (%) f(x)+ax) f/ ()] + [fOP £ (x+a(x) f(x))a” (x)
Lf/(x+a(o) f )P Lf/(x+a(o f )P
+ FOf7(x+ax) f(x)2a’(x) f'(x) +a(x) f7 ()]
[/ (et a() f )P GLg)
If & is the root of the equation f (x) = 0, then f(§) = 0 and therefore ¢(&) = & and ¢'(§) = 0.
Now, from Eq.(3.13g)
" f7E© 2@ f"®U+al@)f ©] _ f7E) ,
=- = 1+2
YO Lf @ TEE R (.13h)
1 ” _
It a() = —mthen 07(€) = 0.
Therefore, the iteration scheme in modified Newton-Raphson method is given by
o= — f(x) )
M f e at) + £ ()] G130
ey E—
where i 21 ()

Equation (3.13i) can also be written as
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_ f(xi)f/(xi) .
LF7 Gl = F ) f 7 (x;) (.13)

Xyl = X
In addition, we have

0 = & ¢'€) = 0and ¢'(§) = 0 (3.13k)

3.4.4 Rate of Convergence of Modified Newton-Raphson Method
Let & be the root of the equation f (x) = 0. In addition, let

€ =x-§
Hence Xip1 = 0(x) = 0(€; + &)
e’ e
or € TE=00E) +¢€ ¢'(E)+ 2—’!¢’(&) +3—’!¢’”(§) +o
&3
or €=, 0"©)+0@ED (3.131)

If we neglect the terms e? and higher powers of e?, Eq.(3.13]) reduces to

43
€n=Ag

1
in which A= 54)”’(&)

Equation (3.13m) shows that the rate of convergence of the modified Newton-Raphson method is cubic.
Example E3.10
Repeat Example E3.7 using modified Newton-Raphson method.

Solution:
f =x*-11x+8
f(x) =4x3-11
o) =122
The modified Newton-Raphson’s formula is
Y= F ) f ()

i+l T i

LFG)T = f ) f7(x)
The calculations are shown in Table E3.10.

Table E3.10
X f(Xi) f’(Xi) f”(Xi) Xit1
2 2 21 48 1.878261
1.878261 | —0.21505 15.50499 | 42.33437 | 1.891624
1.891624 | —0.00405 16.07476 | 42.93891 | 1.891876
3] 1.891876 | —1.4 x 107° | 16.08557 | 42.95034 | 1.891876

Hence, the root is 1.891876.

N = OB
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3.5 SUCCESSIVE APPROXIMATION METHOD

Suppose we are given an equation f (x) = 0 whose roots are to be determined. The equation can be written
as

x =fx) 3.14)
Let x = x( be an initial approximation to the desired root o. Then, the first approximation x; is given by
x1 = ¢(xo)

The second approximation x, = ¢(x;). The successive approximations are then given by x; = ¢(x»),
X4 = 0(x3), ..o X = O(x, 1)

The sequence of approximations of x;, x,, ..., x, always converge to the root of x = ¢(x) and it can be
shown that if 1¢’(x)l < 1, when x is sufficiently close to the exact value ¢ of the root and x,, — ¢ as n — eo.
The convergence of x;, | = ¢(x,), for 1¢p’(x)| < 1 is shown in Fig. 3.5. The following theorem presents the
convergence criteria for the iterative sequence of solution for the Successive Approximation method.

Theorem 3.5: Let o be a root of f(x) = 0 which is equivalent to x = ¢(x), ¢(x) is continuously
differentiable function in an interval I containing the root x = a, if 10’(x)l < 1, then the sequence of

approximations x, X, X, ..., X, Will converge to the root o provided the initial approximation x, € I.
y
A
y=x
y=0(x
> X
0 & X3 Xo X4 Xo

Fig. 3.5: Converge of x.,; = ¢(x,), for |0'(x)] <1

Proof: Let o be the actual root of x = ¢(x), then we can write

o = ¢(a) (3.15)
Let x = xy be an initial approximation to the root, then
xp = Gx) (3.16)

From Egs. (3.15) and (3.16), we obtain
o —x; = 0(ar) — ¢ (xp)
By using the Lagrange’s mean value theorem, we can write
o —x; = (a—-x0)9'&p) for xy < xp < o
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Similaly,
o —x; = (o —x)0'(&) forx; <& <o
o —x3 = (00— x)0'(&y) forx, <& <o

and so on, or

o —-x, = (O( —Xn —l)q),(én— 1) for Xn-1< &n—l <a

Multiplying the above equations, we obtain
o —x, = (00— x0) ¢'(Eo) ¢'(E1) '(E2)s - O (E1)
If 10" (x)l < x < 1, for all I, then
Ix, — ol <lxg — A &Gl (EDID'(E)).. 1€, DI < K, K...K Ixg — ol <K x5 — ol
As K < 1 therefore k" — 0, as n — oo, and thus we have x, — «, provided x, € 1.
Hence, the theorem is proved.
3.5.1 Error Estimate in the Successive Approximation Method

Let €, = x,, — &, the error estimate at the n™ iteration, then lim(g,,, / €,) = ¢'(&) is satisfied. We know that
n—oo
Ix, 41 — &l = 10(x,) — 6 = 1¢"(E,)llx,, — &I, €€ (x,,, E) by the mean value theorem. Hence
En+1 = enl q),(&n) l = lig(en+1 / en) = q)/(é)

Therefore, we obtain the order of convergence as linear. But if ¢(§) = 0 and ¢”(£) # 0, then the Taylor series
expansion of ¢ in a neighbourhood of & is given by

é)

0x,) = 0() + (x, —&)¢"(8) Tl 1 07(E)+-

which shows that

€=, 0 ()~ ¢”(§)+ ¢”(~§)

on using x, .1 = ¢(x,) and €, = lx, ,; — &l

2

€ . . . .
Hence, €,,,= —7"(1)”@), on neglecting the terms containing cubes and higher power of €,. This is a

quadratic convergence.
Example E3.11

Find a real root of x> — 2x — 3 = 0, correct to three decimal places using the Successive Approximation
method.

Solution:
Here fx) =x3-2x-3=0 E.D
Also f) =13-2(1)-3=-4<0

and fQ =22-22)-3=1>0
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Therefore, root of Eq.(E.1) lies between 1 and 2. Since f (1) < f(2), we can take the initial approximation
xo = 1. Now, Eq. (E.1) can be rewritten as

X3 =2x+3

or x = 2x+3)1B3 = o(x)

The successive approximations of the root are given by
X1 = 0(xp) = 2xp + 3)3 = [2(1) + 3]'3 = 1.25992
Xy = 0(x) = (2x; + 3)13 =[2(1.25992) + 3] = 1.31229
X3 = 0(x2) = (2xp + 3)13 = [2(1.31229) + 3] = 1.32235
X4 = 0(x3) = (2x3 + 3)13 = [2(1.32235) + 3] = 1.32427
X5 = 0(xg) = (2x4 + 3)13 = [2(1.32427) + 3] = 1.32463

Hence, the real roots of f(x) = 0 is 1.324 correct to three decimal places.

Example E3.12

Find a real root of 2x — log;y x — 9 using the Successive Approximation method.

Solution:

Here fx) =2x-logjpx-9 E.D

f(4) =24) —log;p(4) —9 =8 —0.60206 — 9 = —1.60206
F(5)=2(5) —log;o(5) — 9 =10-0.69897 — 9 = 0.30103
Therefore, a root of Eq.(E.1) lies between 4 and 5. Rewriting Eq.(E.1) as
1
X = E(loglo X+ 9) = ¢(X)
We start with x, = 4.

1

X1 = 0(xp) = 5(log104 +9) =4.80103
1

X =0(x)) = E(log104.80103 +9) = 4.84067
1

X3 = 0(xp) = 5(10g104.84067 +9) =4.84245
1

X3 =003) = E(log104.84245 +9) =4.84253

1
X5 = O(xg) = E(log104.84253 +9) = 4.84254
Hence, x = 4.8425 is the root of Eq.(E.1) correct to four decimal places.

Example E3.13

Find a real root of cos x — 3x + 5 = 0. Correct to four decimal places using the Successive Approximation
method.
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Solution:
Here, we have
f(x) =cosx—-3x+5=0 (E.D)
f©O) =cos(0)-30)+5=5>0
f@/2) =cos(m/2) —3(m/2) +5=-31/2+5<0
Also fO)f@2) <0

Hence, a root of f(x) = 0 lies between 0 and /2.
The given Eq. (E.1) can be written as

x=%[5+cosx]

Here o(x) = %[5 +cosx] and ¢’(x)=-— sin x
1¢'(x) I= % < 11in (0, T/2)

Hence, the successive approximation method applies.

Let x0:0

W | =

x; = 0(x) = =[5 +cos 0] =2

—_—

xy = 0(x) = =[5 + cos(2)] = 1.52795

—_ W

x3 = ¢(xp) = =[5 4 cos(1.52795)] = 1.68094

—0

x4 = 00n) = 7 [5 + cos(1.68094)] = 163002
x5 = O(xy) = %[5 + cos(1.63002)] = 1.64694
X6 = O(xs) = %[5 + cos(1.64694)] = 1.64131
x7 = Oxg) = %[5 +cos(1.64131)] = 1.64318
xg = O(xy) = %[5 + cos(1.64318)] = 1.64256
Xo = O(xg) = %[5 + cos(1.64256)] = 1.64277

1
X10 = Oxg) = 3 [5 + cos(1.64277)] = 1.64270

Hence, the root of the equation is 1.6427 correct to four decimal places.
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3.6 SECANT METHOD

The secant method is very similar to the Newton-Raphson method. The main disadvantage of the Newton-
Raphson method is that the method requires the determination of the derivatives of the function at several
points. Often, the calculation of these derivatives takes too much time. In some cases, a closed-form expression
for f’(x) may difficult to obtain or may not be available.

To remove this drawback of the Newton-Raphson method, the derivatives of the function being
approximated by finite differences instead of being calculated analytically. In particular, the derivative f'(x) is
approximated by the backward difference

, Jx5) = f(x)
f() = == G.17)

Xi =X

where x; and x;_; are two approximations to the root but does not require the condition f (x;) - f(x;_;) <O.

Now, from the Newton-Raphson method, we have

_ S )G —xy)
Xil =X~ =X
1) FOq) = f(xop)

It should be noted here from Eq.(3.18) that this method requires two initial guess values x; and x; for the
root. The secant method is illustrated geometrically as shown in Fig. 3.6, where a secant is drawn connecting
f(x1) and f (x;). The point where it intersects the x-axis is x;,1. Another secant is drawn connecting f (x;) and
f(x;41) to obtain x; ,, and the process continues.

f(X) r'y

(3.18)

W Xivt Xt

Fig. 3.6: The secant method

3.6.1 Convergence of the Secant Method
The formula for the secant method can be written as
('xn - xn—l)
Xy———— ——
f(xn) - f('xnfl)
Let & be the exact root of the equation f(x) = 0 and f (§) = 0. The error at the n'” iteration is given by
E,=x,-& (3:20)

Xn+1 =

3.19)
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Now Eq.(3.19) becomes

e (EmE)f(E,+E)
T f(e, +8)— [, +E)

G e f@ e, fEHE D E) + ]
@n—a4nﬁa+%@i—é4nW@wm-

2 ” -
=en _|:En +M+...:||:1+%(en +en—1)f (&)+

€

:en

2178 (S
1 7@ . )
- 2 €, €01 f,(E_,) + O(Enenfl + €, Enfl) (321)
Equation (3.21) can be expressed as
€ntl = C€ERE (322)
where c= %J}’:—((é')) (3.23)

Equation (3.23) is a non-linear difference equation which can be solved by letting €,,,= A€l or

€,= A€l_ and which gives

€p1= Ell‘l/p Ail/p
Hence Ael=ce, e AT (324

or e’= cA~0+P) e;ﬂ/p (3.25)

Now by equating the power of €, both sides of Eq.(3.25), we obtain

p=1+ 1
P
1
=—(1+
or P=> (1 +5 ) (3.26)
Therefore taking the positive sign in Eq.(3.26), we get
p=1618
and €,, = Ac.o® (327

Hence, the rate of convergence of the secant method is 1.618 which is lesser than the Newton-Raphson
method. The second method evaluates the function only once in each iteration whereas the Newton-Raphson
method evaluates two functions f and f' in each iteration. Therefore, the second method is more efficient
than the Newton-Raphson method.

Example E3.14

Find a root of the equation x> — 8x — 5 = 0 using the secant method.
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Solution:
fx) =x3-8x-5=0
fB =33-8B3)-5=-2
f@ =43-84)-5=-27

Therefore one root lies between 3 and 4. Let the initial approximations be xy = 3, and x; = 3.5. Then, x, is

given by

_ Xof () —x f (%)
f) = f(x)

The calculations are summarised in Table E3.14.

2

Table E3.14: Secant method

Xg f(xo) X f(x1) X5 f(x,)
3 -2 3.5 9.875 3.08421 | —0.33558
3.5 9.875 3.08421 | —0.33558 | 3.09788 | —0.05320
3.08421 | —0.33558 | 3.09788 | —0.05320 | 3.10045 0.00039
3.08788 | —0.05320 | 3.10045 0.00039 | 3.10043 0
3.10045 0.00039 | 3.10043 0 3.10043 0

Hence, a root is 3.1004 correct up to five significant figures.

Example E3.15

Determine a root of the equation sin x + 3 cos x — 2 = 0 using the secant method. The initial approximations
Xp and x; are 0 and 1.5.

Solution:

The formula for x, is given by

_ Xof () = x f (xp)
S = f(x)

The calculations are summarised in Table E3.15.

X2

Table E3.15: Secant method

X0 f(x) X1 fi(x1) X2 f(x2)
0 -2.33914 | 1.5 -0.79029 | 1.24488 | —0.09210
1.5 -0.79029 | 1.24488 | —0.09210 | 1.21122 | -0.00833
1.24488 | -0.09210 | 1.21122 | —0.00833 | 1.20788 | —0.00012
1.21122 | -0.00833 | 1.20788 | —0.00012 | 1.20783 0
1.20788 | —0.00012 | 1.20783 0 1.20783 0

Hence, a root is 1.2078 correct up to five significant figures.

Example E3.16
Repeat Example E3.14 with initial approximations of xy = -2 and x; = -1.5.
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Solution:
X, is given by

_ Xof () = x f (xp)
S = fx)

The calculations are summarised in Table E3.16.

X2

Table E3.16: Secant method

X f(xo) X f(x1) Xy f(x,)
-2 —4.15774 | -1.5 —2.78528 | —0.48529 0.18715
-1.5 —2.78528 | —0.48529 0.18715 | =0.54918 0.03687

—0.48529 0.18715 | —0.54918 | 0.03687 | —0.56488 | —0.00129
—0.54918 0.03687 | —0.56485 | —0.00129 | -0.56432 | 0.00001
-0.56485 | -0.00129 | -0.56432 | 0.00001 | -0.56433 | O
—0.56432 0.00001 | -0.56433 | O —0.56433 | 0

Hence, aroot is —0.5643 correct up to five significant figures.

3.7 MULLER’S METHOD

Muller’s method is an iterative method and free from the evaluation of derivative as in Newton-Raphson
method. It requires three starting points (x,_, f, -2), (X, _1, f,—1) and (x,, f2). A parabola is constructed that
passes through these points then the quadratic formula is employed to find a root of the quadratic for the
next approximation. In other words, we assume that x,, is the best approximation to the root and consider the
parabola through the three starting values as shown in Fig. 3.7. We denote f (x,_5) = f,2, f (x,,_1) = f,_1 and
J ) = foe

(Xn-1, fn—1)

(Xn-2, fn-2)

Xp-2 Xn-1 Xn Xn+1

Fig. 3.7: Muller's method
Let the quadratic polynomial be
fx) =ax>+bx+c (3.28)
If Eq.(3.28) passes through the points (x,, _, f, o), (X, _1, fn—1) and (x,, f,,), then
ax, o +bx, 5 +c=f, (3.29)
axyy +bx, e = £

ax,% +bx, +tc=f,
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Eliminating a, b, ¢ from Eq.(3.29), we obtain the following determinant

f(x) x? x 1
Sz xr%72 X, 1 -0
St xrffl X 1

fo %oox 1

By expanding this determinant in Eq.(3.30), the function f (x) can be written as

(x—x,_)(x—x,) F+ (X=X, )(x—x,)

(xn—z —Xy-1 )(xn—z - xn) (xnfl —Xp-2 )(xnfl - xn)

fn—l

(x=x,_,)(x—x,_)

(xn - xnfz)(xn ~ Xn-1

)fn

Equation (3.31) is a quadratic polynomial passing through the three given points.
Let h=x-x, h,=x,—x,1 and h,_; = x,_] — X,.
Now, Eq.(3.31) becomes

h(h+h,) _ h(h+ R, + ) (h+h,)h+h,+h,_)

—_— f ot =0
hn—l(hn—l +hn) "2 hnhn—l " hn (hn +hn—l) f"
Noting f(x)=0.
h
Let k:hi, A, =——and 3, =1+2,
n n—1

The Equation (3.32) now reduces to the following form:

D202 fueha + £ XS+ frh2 = £ 082 4 £, +8,)}8, + £, =0
or Ac,+Ag, +93,/,=0
where 80 =hafua =80 o + 0y 48,01,

Cn = Mhnfra = 8ufu 1 + f)

Equation (3.34) can be written as

Snfn(LJ+g—”+cn =0

A A
Solving Eq.(3.35) for 1/, we obtain
}\’ _ 26n fn

o n i\/gi _48nfncn

The sign in the denominator of (3.36) is + according as g, > 0 or g, < 0.

(3.30)

331

(332)

(3.33)
(3.34)

(3.35)

(3.36)
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X—X
Hence A=——"—orx = x,+ (x, — x,_A 3.37)
Xp ~ Xp-1
Now, replacing x on left hand side by x,, , ; in Eq.(3.37), we obtain
Xp+1= Xy + (xn — Xn —1))\' (338)

Equation (3.38) is the Muller’s formula for the root and the procedure for finding a root is summarised in
Table 3.1.

Table 3.1: Muller's method

hn:Xn_Xn—l’ 7\';, =h_n78n: 1 +7\‘n
n-2
gn = }\‘ifn72 _Sifnfl + (}\'n + 6n )fn
Ch = 7\'n(}\fnfn—Z - ann—l + 1)
28, f,

7\4 — n-n

g, T Vgi _48nfncn
Xp+1 = Xp + (X — Xn—l)k
Xp-1=Xn+ (Xn - Xn—l)x

Example E3.17

Find a root of the equation x3 — 3x — 7 = 0 using the Miller’s method where the root lies between 2 and 3.

Solution:
Let xy=2,x; =2.5 and x, = 3. The calculations are shown in Tables E3.16 and E3.17(a).

Table E3.17: Muller's method

n Xn-2 Xn-1 Xn hn hn—l )\,n Sn
212 2.5 3 0.5 0.5 1 2
3125 3 24272 | -0.5728 0.5 —1.14559 | -0.14559
413 24272 | 2.42599 | -0.00122 | —0.5728 0.00213 1.00213
524272 | 2.42599 | 2.42599 | 0 —0.00122 | —0.0029 0.99710
Table E3.17 (a): Muller's method
n fn—2 fn—l fn gn Cn 7\4 Xn+1
2|15 1.125 11 23.5 3.75 —1.14559 | 2.42720
3| 1.125 11 0.01781 1.22026 | -0.37867 | 0.00213 | 2.42599
4111 0.01781 | —-0.00005 | —0.01789 | 0.00001 | —0.0029 | 2.42599
5| 0.01781 | —0.0005 0 0.00005 | O —0.00005 | 2.42599

Hence one root is 2.42599 correct up to five decimal places.
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3.8 CHEBYSHEV METHOD

Consider the equation to be solved as f(x) = 0. The function f(x) can be expanded by Taylor’s series in the
neighbourhood of x, as

0=Ff() =f0x) +x—2,)f (%) +- - (3:39)
Equation (3.39) gives

_ f ()
X=X, = fon) (340)

Equation (3.40) gives the (n + 1) approximation to the root.

Hence
I (€5
n+l n f,(xn) (341)
Once again, we expand f (x) by Taylor’s series and retain up to the second order term, we obtain
’ (.X' - xn)2 ”
Ozf(-x):f(xn)-l'(x_xn)f (xn)+Tf ('xn) (342)
_ ’ (xn+l X )2 ” _
Hence S =fx)+(x—x)f (xn)+Tf (x,)=0 (343)
Substituting the value of x,,,; — x,, from (3.41) to the last term and we obtain
RN B LC) e
f(xn)+(xn l_xn)f (xn)+_,—nf (xn)zo 344
’ 20f )P G4
1 2
Hence o =x - F(x) 1 [f()] F70x) (3.45)

FO) 20 G)F
Equation (3.45) can be recognised as the extended form of Newton-Raphson formula and it is called the
Chebyshev’s formula.

The rate of convergence of this method can be shown to be a cubic.

3.9 AITKEN’S A2 METHOD

Suppose we have an equation

S =0 (3.46)
whose roots are to be determined.
Let I be an interval containing the point x = o.

Now, Eq.(3.46) can be written as x = ¢(x) such that ¢(x) and ¢’(x) are continuous in 7 and I¢’(x)| < 1 for all
xin L.

Denoting x; _;, x; and x; . as the three successive approximations to the desired root o, we can write

o—-x; = )\.(OC —Xi_1) (347)
and - X4 = }\,(O( - Xl‘) (348)
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where A is a constant so that 10’(x)| < A < 1 for all i.
Dividing Eq.(3.47) with Eq. (3.48), we obtain

o-x X

(3.49)
C=Xpyp 0= X
Equation (3.49) gives
(X —x; )2
o= X 1 (3.50)

(Xip1 =22 = X;p)

Now A)Ci =Xiy1 — X
and Azxi_l =(E- l)zxi_l = (E(Z -2E + l)xi_l =Xi+ — 2)(,' + X1 (3.51)
Using Eq.(3.51), Eq.(3.50) can be written as

o=x,, & (352)

Equation (3.52) gives the successive approximation to the root o and method is known as the Aitken’s
A? method.

A A?
Xi-1
AXi
X AZX i-1
AXi
Xi+1

Example E3.18

14+ cosx

Find the root of the function x =( ) correct to four decimal places using Aitken’s iteration method.

Solution:
fx) =cosx—3x+1 E.D
FO =1
f@?2) = cos(m/2) — 3(/2) + 1 =—8.42857
Hence f©) >0and f(/2) <0
Also fO) f(m/2) = 1(— 8.42857) = —-8.42857 <0

Therefore, a root exists between 0 and /2.

Equation (E.1) can be written as

x:(H—(;OSXJ — 0(x)
Now o' (x) = _S;nx =[0"(x)| = _S;nx <1—xe(0,g) E2)
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Equation (E.2) signifies that Aitken’s method can be employed.

Let xy = 0 be an initial approximation to the root of (E.I).

X = 0(x) = ( I+ COSO) — 0.66667
X = 0(x) = 1+cos((;.66667) — 0.59530
X = 0(xy) = 1+cos((;.59530) — 0.60933

‘We can now construct the table as shown in Table E3.18.

Table E3.18: Aitken’s method

X Ax A’
~0.07137
x; = 0.66667 T}
0.08540
X = 0.59530 ;
Ax,
0.01403
%= 060933 | —1 -
2 2
Therefore, 5y =ty = B2 60033 - (LOABT 6 60700
(A°x) (0.08540)

Hence, the root is 0.6070 correct up to four decimal places.

3.10 COMPARISON OF ITERATIVE METHODS

The Bisection method and the method of False Position always converge to an answer, provided a root is
bracketed in the interval (a, b) to start with. Since the root lies in the interval (a, b), on every iteration the
width of the interval is reduced until the solution is obtained. The Newton-Raphson method and the method
of Successive Approximations require only one initial guess and on every iteration it approaches to the true
solution or the exact root. The Bisection method is guaranteed to converge. The Bisection method may fail
when the function is tangent to the axis and does not cross the x-axis at f (x) = 0.

The Bisection method, the method of False Position, and the method of Successive Approximations
converge linearly while the Newton-Raphson method converges quadratically. Newton-Raphson method
requires less number of iterations than the other three methods. One disadvantage with Newton-Raphson
method is that when the derivative f’(x;) is zero, a new starting or initial value of x must be selected to
continue with the iterative procedure. The Successive Approximation method converges only when the
condition I¢’(x)l < 1 is satisfied. Table 3.2 gives a summary of the comparison of the methods presented in
this chapter.
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Table 3.2: Comparison of the methods

S.No. Method Formula Order of Functional evaluations
convergence at each step
_a+b One
1. Bisection Xa = ) bit/iteration 1
gain
. af (b) —bf(a)
2. False position X,=—"—""— 1 1
f(b)—f(a)

f(x))

3. Newton-Raphson X =X — (x.) 2 2

4. Modified f,

Xt =X T e 7]
Newton-Raphson i+l "y [Xn —1if, /fn] 3 3
5. Successive X1 = 0(Xo) 1 1
approximation

f(x )X, —X.

6. | Secant Xy =X, IO —x,) 1.62 1
f(x,)—f(x,)

7. Muller Xnel = Xn + (Xn — Xp_)A 1.84 1

2

8. | Chebyshev X, =X, —f—",—l ff £’ 3 3

£ 2f”

3.1 SUMMARY

In this chapter, the techniques for the numerical solution of algebraic and transcendental equations have
been presented. Numerical methods involving iterative solution of nonlinear equations are more powerful.
These methods can be divided into two categories: Direct methods and Indirect (or iterative) methods. The
indirect or iterative methods are further divided into two categories: bracketing and open method. The
bracketing methods require the limits between which the root lies, whereas the open methods require the
initial estimation of the solution. Bisection and False Position methods are two known examples of the
bracketing methods. Among the open methods, the Newton-Raphson and the method of Successive
Approximation are most commonly used. The most popular method for solving a non-linear equation is the
Newton-Raphson method and this method has a quadratic rate of convergence. These methods have been
illustrated with examples.

Problems
3.1 Use the Bisection method to find a solution accurate to four decimal places for x = tan x in the interval
(4.4, 4.6).

9
3.2 Determine the solution of the equation 8 — E(X — sin x) = 0 by using the Bisection method accurate
to five decimal places in the interval (2, 3).

3.3 Use the Bisection method to compute the root of e* — 3x = 0 correct to three decimal places in the
interval (1.5, 1.6).
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34
3.5

3.6

3.7

3.8

3.9

3.10

3.1

3.12

3.13
3.14
3.15

3.16
3.17

3.18

3.19

3.20

3.21

3.22

3.23

3.24

Find the root of log x = cos x correct to two decimal places using Bisection method.

Use the Bisection method to find a root of the equation x> — 4x — 9 = 0 in the interval (2, 3), accurate
to four decimal places.

Use the Bisection method to determine a root correct to three decimal places of the equation
x logg x = 1.2. Interval (2, 3).

Use the Bisection method to find a root of the equation 4.90572 — 15¢ + 5 = 0 in the interval (0.3, 0.4)
with an accuracy of 4 digits.

Use Bisection method to find the root of f(x) = x> — 10x2 + 5 = 0 that lies in the interval (0.6, 0.8)
correct within four decimal places.

Use Bisection method to find the root of f (x) = x — tan x in the interval (7, 8) correct to four decimal
places.

1
Use Bisection method to find the smallest positive root of cos x = 5 + sin x in the interval (0.41, 043).

Use an error tolerance of € = 0.0001.

Use the method of False Position to find solution accurate to within 10~* for the function f (x)
= x — cos x in the interval (0, 7t/2).

Use the method of False Position to find solution accurate to within 10~* for the function f (x)
=x—-0.8 — 0.2 sin x = 0 in the interval (0, 7/2).

Repeat Problem 4.6 correct to four decimal places using the False Position method.

Repeat Problem 4.7 correct to four decimal places using the False Position method.

Use the method of False Position to solve the equation x tan x + 1 = 0 accurate to three decimal
places starting with 2.5 and 3.0 as the initial approximations to the root.

Use method of False Position to solve the equation x log x — 1 = 0 correct to three significant figures.
Use the method of False Position to solve the equation xe® — cos x = 0 correct to four decimal places
in the interval (0, 1).

Use the method of False Position to find a root correct to three decimal places for the function
tan x —4x = 0.

Use the method of False Position to find a root of f(x) = e* — 2x?> = 0 with an accuracy of four digits.
The root lies between 1 and 1.5.

Use the method of False Position to find a root correct to three decimal places of the function
X —4x-9=0.

A root of f(x) = x> — 10x2 + 5 = 0 lies close to x = 0.7. Determine this root with the Newton-Raphson
method to five decimal accuracy.

A root of f(x) = e — 2x2 lies in the interval (1, 2). Determine this root with the Newton-Raphson
method to five decimal accuracy.

A root of f(x) = x3 — x2 — 5 = 0 lies in the interval (2, 3). Determine this root with the Newton-Raphson
method for four decimal places.

Use Newton-Raphson method to find solution accurate to within 10~ for the function f(x)
= x — cos x in the interval (0, 7/2).
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3.25

3.26

3.27

3.28
3.29

3.30

3.31

3.32

3.33

3.34

3.35

3.36

3.37

3.38

3.39

3.40

341

3.42

3.43

Use Newton-Raphson method to find solution accurate to within 10~ for the function f (x) = x — 0.8
— 0.2 sin x = 0 in the interval (0, 7/2).

2

X
A positive root of the equation e =1+ x+ 7+ .

lies in the interval (2, 3). Use Newton-

Raphson method to find this root accurate to five decimal places.
Use Newton-Raphson method to find the smallest positive root of the equation tan x = x accurate to
four decimal places.
Determine the positive root of the equation x = 2 sin x accurate to three decimal places.
Use the Newton-Raphson method to estimate the root of f(x) = e™ — x with an initial guess of x, =0
accurate to five decimal places.

2 3 4

The equation f(x)=0.1-x+ 7 3% + 576 +---= 0 has one root in the interval (0, 1). Determine this

root correct to five decimal places.

Use the Successive Approximation method to find correct to four significant figures a real root of
cosx—3x+1=0.

Use the Successive Approximation method to find correct to four significant figures a real root of
e*—10x=0.

Use the Successive Approximation method to find correct to four decimal places a real root of
2x —log,, x-7=0.

Use the Successive Approximation method to find correct to four significant figures a real root of the
function e* tan x — 1 = 0.

Find the real root of the equation x — sin x — 0.25 = 0 to three significant digits using the Successive
Approximation method.

Use the method of Successive Approximation to find a root of the equation e* — 3x = 0 in the interval
(0, 1) accurate to four decimal places.

Use the method of Successive Approximation to find a real root of e* — x> = 0 correct to four significant
figures.

Use the method of Successive Approximation to determine a solution accurate to within 102 for
x-3x2-3=0o0n[l,2]. Use x, = 1.

Find a root of the equation x3 — 3x2 + 4 = 0 using the modified Newton-Raphson method, starting
with x, = 1.8.

Find a root of the following function with an accuracy of 4 digits using modified Newton-Raphson
method, starting with x, = 1.4. f (x) = e* - 2x*> = 0.

Find a root of the equation x* — 8x — 4 = 0 using the modified Newton-Raphson method starting with
X, = 2.8 up to four significant figures.

Find a root of the equation x> — 3x — 5 = 0 using the modified Newton-Raphson method correct up to
four decimal places starting with x,, = 2.0.

Find a root of the equation x3 — x — 1 = 0 using the modified Newton-Raphson method correct up to
four decimal places starting with x, = —1.5.
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3.44
3.45

3.46

3.47

3.48

3.49
3.50
3.51
3.52
3.53
3.54
3.55
3.56
3.57
3.58
3.59
3.60
3.61
3.62

Find a root of the equation x% — x — 1 = 0 using the secant method approximations: x, = 2 and x, = 1.0.

Find a root of the equation x3 — 75 = 0 using the secant method with the initial approximations of
X,=4and x, =5.

Find a root of the equation tan x — tanhx = 0 using the secant method with initial approximations:
X,=7andx =75.

Find a root of the equation cos x cosh x — 1 = 0 using the secant method with initial approximations:
X,=4.5and x, =5.0.

Find a root of the equation sin x — 0.1x = 0 using the secant method with initial approximations:
X,=2and x, = 3.

Repeat Problem P3.39 using Muller’s method given that a root is near 1.0.

Repeat Problem P3.40 using Muller’s method given that a root is near 4.0.

Repeat Problem P3.41 using Muller’s method given that a root is near 7.0.

Repeat Problem P3.42 using Muller’s method given that a root is near 4.6.

Repeat Problem P3.43 using Muller’s method given that a root is near 2.8.

Find a root of the equation cos x — xe* = 0 using Aitken’s A% method.

Find the root of the equation x> — 5x — 11 = 0 correct to three decimal places using Aitken’s method.
Find the root of 0.5 + sin x — x = 0 and x;, = 1 using Aitken’s method.

Use Aitken’s method to find a root of the equation 3x — loglOx — 16 = 0.

Use Aitken’s method to find a root of the equation e* — 3x = 0 lying between 0 and 1.

Use Aitken’s method to find a root of the equation x3 + x — 1 = 0.

Use Aitken’s method to find a root of the equation 5x3 — 20x + 3 = 0 in the interval (0, 1).

Use Aitken’s method to find a root of the equation x> + 2x — 2 = 0 up to three decimal places.

Use Aitken’s method to find a root of the equation x> — 3x2 + 4 = 0.

ONORO)



CHAPTER

Numerical Differentiation

4.1 INTRODUCTION

Numerical differentiation deals with the following problem: given the function y = f(x) find one of its derivatives
at the point x = x;. Here, the term given implies that we either have an algorithm for computing the function,
or possesses a set of discrete data points (x; y;), i = 1, 2, ...., n. In other words, we have a finite number of
(x, y) data points or pairs from which we can compute the derivative. Numerical differentiation is a method
to compute the derivatives of a function at some values of independent variable x, when the function f(x) is
explicitly unknown, however it is known only for a set of arguments.

Like the numerical interpolation discussed in Chapter 5, a number of formulae for differentiation are
derived in this chapter. They are:

(a) Derivatives based on Newton’s forward interpolation formula. This formula is used to find the
derivative for some given x lying near the beginning of the data table.

(b) Derivatives based on Newton’s backward interpolation formula. This formula is suitable to find
the derivative for a point near the end of the data table.

(c) Derivatives based on Stirling’s interpolation formula. This formula is used to find the derivative
for some point lying near the middle of the tabulated value.

A method to find the maxima and minima of a given function is also discussed in this chapter.

4.2 DERIVATIVES BASED ON NEWTON’S FORWARD

INTERPOLATION FORMULA
Suppose the function y = f(x) is known at (n + 1) equispaced points xg, X, ...., X, and they are yy, yi, ..., ¥»
respectively i.e., y; =f(x),i=0, 1, ....,n. Let x; =xg + ih and u = %, where £ is the spacing.

Referring to Chatper 5, the Newton’s forward interpolation formula is

u(u—1) =) (u—n-1) A"y

n!

y=f(x)=yy +uly, + Ay, + )
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2_

3 2 4 3 2
—3u”+2 —6u’ +11u” —
2‘14 2)’0 u 3; u 3y0 u —6u - u —6u 4

u
= Yo Huly, + Yo

w’ —10u* +35u —50u> +24u 5
+ o A

Yo+ @1
Differentiating Eq.(4.1) w.r.t. x, we get

, 1 2u-1
f (X)ZZ Ayg +———

3u2—6u+2A3y +4u3—18u2+22u—6A4
2!

2
A%y + 3 0 a1 Yo

s 5u* —40u® +105u% —100u + 24

o Ay, 42)

Note h thtd—u—l
ote here tha o

Differentiating Eq.(4.2) w.r.t. x, we obtain

6u—6 5  12u* =36u+22 4,  20u’ —120u* +210u—100

5

1
()= h—z{Az)’o +

and so on.
Equations (4.2) and (4.3) give the approximate derivatives of f(x) at arbitrary point x = x; + uh.
When x = x, u = 0, Eqs.(4.2) and (4.3) become

, 1 | 13 |V L s
=—|Ayy——A"y,+—A"y, —— A"y, +—=A’y, —
S (x) h{ Vo =5 Aot A~ ANt S AT 44
” 1| 3 11 4 5.5
and =—1/A Ay, +—A ——ANy, +- 4.5
I (%) hz{ Yo Yo 12 Yo 6 Yo 45)
and so on.
Example E4.1

2

d d
From the following table find the value of d_z and d_;; at the point x = 1.0.
X

x |1 1.1 1.2 1.3 1.4 1.5
y | 54680 | 5.6665 5.9264 6.2551 6.6601 7.1488
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Solution:

The forward difference table is

x |y Ay | ANy | Ay
1.0 | 5.4680
0.1985
1.1 | 5.6665 0.0614
0.2599 0.0074
1.2 | 5.9264 0.0688
0.3287 0.0074
13 | 6.2551 0.0763
0.4050 0.0074
1.4 | 6.6601 0.0837
0.4887
1.5 | 7.1488

Here xy = 1.0 and # = 0.1. Then u = 0 and hence

b y'(1.0) = %[Ayo —lAZyO +%A3y0 —} = ${0.1985—%(0.0614)+%(0.0074)} =1.7020

dx 2
d’y =y"(1.0)= L[Ay —- A3y, +] ! [0.0614 - 0.0074] = 5.4040
i p2 L0 0 (0.1)
Example E4.2
Obtain the first and second derivatives of the function tabulated below at the points x = 1.1 and x = 1.2.
X: 1 12 14 1.6 1.8 20
y: 0 0.128 0.544 1.298 2440 4.02
Solution:

We first construct the forward difference table as shown below.

X y Ay | Ay | ANy | Al
10— 0~_
TR0.128 \
1.2—+0.128 70.28
416 8\"0.05 ~_
1.4 0.544 70.338\, 0
0.754 0.05 N
1.6 1.298 0.388 0
1.142 0.05
1.8 2.440 0.438
1.580
2.0 4.02

Since x = 1.1 is a non-tabulated point near the beginning of the table, we take xy = 1.0 and compute
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Hence,

2p-1 3p>—6p+2
{A)’o"' p2 Az)’o"’%Aa)’o}

3(0.5)> -=6(0.5)+2
6

= ${0.128+0+ (0.05)} =0.62958

1
0.2)°

dzy

dx®

- hiz[Az Yo+ (p—DA? yo] = [0.288 + (0.5~ 1)0.05] = 6.575

Now, x = 1.2 is a tabulated point near the beginning of the table. For x = xo = 1.2, p = 0 and

dy 1 1, 1., 1 1 1
D Ay == A2y + =A%y, [= —| 0.416——(0.338) + —(0.05) | = 1.31833
dx h[ Yo 5 Yo 3 )’0} 0.2[ 2( ) 3( )}
ﬂ—imzy ~ A%yl —[0.338-0.05]= 7.2
R0 02 ' '

Example E4.3

Find the first and second derivatives of the functions tabulated below at the point x = 1.1 and x = 1.2.

x|1]12]14]16 |18]20
y|[0]01]05]125|24]39

Solution:

First, we construct the forward difference table:

X y Ay | ANy | Ny | Ay
10—>0 N
N0.1
1.2=—=$0.1 (_ 3
T0.4 140.05
14 0.5 T$0.35 0
0.75 05 <
1.6 1.25 0.40 =0
1.15 0.05
1.8 2.40 0.45
1.5
2.0 3.90

Here x = 1.1 is a non-tabulated point near the beginning of the table. For x5 = 1.0,
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- 2_
Hence @ZL{A 0+mAzyo+wM}

dx h

3(0.5)2 - 6(0.5)+2

= ${0.1+0+ (0.05)} =0.48958

d’y 17, 3 1
Y A2y +(p-DA3y, |= ——[0.3+(0.5-1)0.05] = 6.875
> R [ Yorip Y 0] (0.2)2

For x = 1.2, it is a tabulated point near the beginning of the table.

Let x=x=12,p=0
dy 1 1., 1 3 1 1 1
—=—|Ayy——A"y, +—A" =—104-—(0.35)+—(0.05) | =1.208
It h[ Yo 2 Yo 3 J’O} 0'2{ 2( ) 3( )}
ﬂ—imzy —Ay, 1= ! [0.35-0.05]=7.5
w7 02 T T '
43 DERIVATIVES BASED ON NEWTON’S BACKWARD
INTERPOLATION FORMULA
Here, we assume the function y = f (x) is known at (n + 1) points xg, X1, ...., X,, i.6., yi=f(x), i=0, 1,2, ....,
X — X,
n are known. Let x; =xo+ ih,i=0,1,2, ...,nand v= L

Then, the Newton’s backward interpolation formula from Chapter 5 is given by

F) =y, + Wy, + v(v+1) szn N viv+D)(v+2) V3yn N viv+D(v+2)(v+3) V4yn
21 3! 4!
+Dv+2)v+3)(v+4
DI S)fv )(v )Vsyn + 46)
When the Eq.(4.6) is differentiated w.r.t. x successively, we obtain
, o1 WwHl_, 3P H6v+2 5 AP H18F+ 22046,
f (x)—;{vwaV Mt VIt a0 Vi @.7)
50t +401° £1050% +100v+24 _s
+ Vy, +
5!
2 3 2
£ = h_lz{vzyn . 6v3-|'- 6 vy 4 12v +i6v+ 22 vy + 20v +120V5-'|- 210v+100 vy

and so on. 4.8)



112 // Numerical Methods //

Equations (4.7) and (4.8) can be used to determine the approximate differentiation of first, second, etc. order
at any point x, where x = x,, + vh.

If x = x,,, then v = 0.
Equations (4.7) and (4.8) become

) 1 1 1 1 1
f (xn)=Z{Vyn+5V2yn+§V3yn+ZV4yn+§V5yn+--1 4.9)
” 1 2 3 11 4 5 5
and f (xn)=h—2 Viy,+V yn-l—EV yn+gV Y, tee 4.10)

Example E4.4

A slider in a machine moves along a fixed straight rod. Its distance x(m) along the rod are given in the
following table for various values of the time ¢ (seconds).

t(sec.) | 1 2 3 4 5 6
x(m) | 0.0201 | 0.0844 | 0.3444 | 1.0100 | 2.3660 | 4.7719

Find the velocity and acceleration of the slider at time ¢ = 6 sec.
Solution:

The backward difference table is

t X Vx V3x V3x Vix Vx
1.0 0.0201
2.0 0.0844 | 0.0643
3.0 0.3444 | 0.2600 | 0.1957
4.0 1.0100 | 0.6656 | 0.4056 | 0.2100
5.0 2.3660 | 1.3560 | 0.6904 | 0.2847 | 0.0748
6.0 47719 | 2.4059 | 1.0499 | 0.3595 | 0.0748 | 0.0000

Here h=1.0
£= 1 Vx+lV2x+1V3x+lV4x+lV5x+---
dt h 2 3 4 5
1 1 1 1 1
=—2.4059 +—(1.0499) + —(0.3595) + —(0.0748) + — (0.0) | = 3.0694
1.0 2 3 4 5
2
4x_ g v Mysg o 1.0499 +0.3595 + E(0.0748) ) (0) |=1.4780
dr*  h? 12 (1.0) 12 6
4.4 DERIVATIVES BASED ON STIRLING’S INTERPOLATION FORMULA
Suppose y.; = f(xs), i =0, 1, ...., n are given for 2n + 1 equispaced points xg, Xiq, X4, ..., Xop, Where

X+i=xoxih,i=0,1,...,n
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The Stirling’s interpolation polynomial is given by

M{Ay—ﬂLAyo}_ﬁAz MS—M{A3}’2+A3Y1}

F= o+, 2 200 T 2

4_ 2 5 3 5 5
u —u" 4 w =5 +4u| NNy s+Ay,
MY Ay, + = { > +o 4.11)
where 4 =20
h
When Eq.(4.11) is differentiated with respect to x successively, we obtain
g LAy A 3-[Ny, Ay
X)=—|——+uA"y_ +
VAEY) h[ > YA 6 5
2 —u Sut —15u +4( Ay + Ay,
+ A + +..
2 07 120 2 “.12)
1] ., Ay, +A -1 6u* -1, 2 =3u[ Ny +A°y,
d "(X)=—| ATy_ +u + Ay, + + o
an f7(x) hz[ Yo > B Yoo 2 5
4.13)
At x = xp, u = 0 and Eqs.(4.12) and (4.13) become
Py L[ Motdyy 1 Ny +8y, | L[Ny, +Ay ),
X, = — —_—— _— — - ee
“Thl 2 6 2 30 2 @.14)
” 1 2 1 4
S (xo):h—2 A )H‘EA Yoo+ 4.15)

Example E4.5

2

d d
Find d_z and d—; for x = 0.2 for the data given in the following table
X

x[0]0.1 0.2 0.3 04 0.5
y | 0] 0.10017 | 0.20134 | 0.30452 | 0.41076 | 0.52115
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Solution:

Construct the following difference table.

X y Ay A’y Ay Aly

0 0
0.10017

0.1 0.10017 0.001
0.10017 0.00101

0.2 0.20134 0.00201 0.00004
0.10318 0.00105

0.3 0.30452 0.00306 0.00004
0.10624 0.00109

0.4 0.41076 0.00415
0.11039

0.5 0.52115

Here, we use Stirling’s formula. Hence, for x = 0.2, we have

dy _1{ Ay +Ay, _1A3}’72 +A%y
dx h 2 6 2

1 [0.10117+0.10318 1
_ 1| 0I0M7+010318 _ 1 00101+ 0.00105 |=1.020033
0.1 2 12

d’y 1], 1, 1 1
LY A2y ——AYy, |= 0.00201 - — (0.00004) | = 0.200666
dx hz[ RS T 0 1! )

Example E4.6
Compute the values of f'(3.1) and f'(3.2) using the following table.

x |[1]2 |3 |4 |5
fx) | 0| 1.4 | 3.3 |56 8.1

Solution:

The central difference table is

X y=fx) | Ay | A’y | Aly | Ay
X2 = 1 0
1.4
X1=2 1.4 0.5
1.9 —0.1
Xo=3 3.3 0.4 —0.1
2.3 —0.2
x =4 5.6 0.2
2.5
Xy = 5 8.1
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3.1-3
)C()=3,h=1, M=T=0.l

, 1| Ay_, + Ay, 5 3u? -1 A'3y,2 + A3y,1 2u’ —u 4
3.)=—| ———+uA + + A + e
f'3.) h[ 2 un-y_ 6 2 12 )

1

2 3
1{1.9+ 23 | 0104y + 30D —1(—0.1—0.2) L 20.D7-0.1 (_0_1)}
6 2 12

=[2.1 + 0.04 + 0.02425 + 0.00082] = 2.16507

, 1 Ay, +ANy ) 6u*-1
f(3.1)=h—2{A2yl+u( “2 y1j+ = Aty 4

—| — 2 —
= 1%{0.4+0.1( 0'12 02} + 6(0'11)2 ! (—0.1)} =[0.4-0.015+0.00783] = 0.39283

4.5 MAXIMA AND MINIMA OF A TABULATED FUNCTION

From calculus, we know that if a function is differentiable, then the maximum and minimum value of that
function can be determined by equating the first derivative to zero and solving for the variable. This method
is extendable for the tabulated function.

Now, consider the Newton’s forward difference formula given in Eq.(4.1).

Differentiating Eq.(4.1) w.r.t. u, we obtain

d 2u-1 3u® —3u+2
L Ay + Ay 4 T TS ARy 4.16)
du 2 6
. . dy . o . . .
For maximum or minimum, o 0. Neglecting the term after the third difference to obtain a quadratic equation
in u.
Hence syt ue D) a2y of £ 1 g =0 @.17)
Yo ) Yo 5 273 Yo .
Ny 5 2 12 [ 13
——u"+| A%y, —=A u+|Ayg—=A%y,+=-A =0
or > Yo > Yo Yo 2 Yo 3 Yo
or agu? + ay +a, =0 4.18)

which gives the values of u.
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Here

The values of x will then be obtained from x = xy + uh.

Example E4.7

Find x correct to four decimal places for which y is maximum from the following data given in tabular form.
Find also the value of y.

Solution:

x| 1|12 1.4 1.6 1.8
y | 0]0.128 | 0.544 | 1.298 | 2.44

We first construct the forward difference table as shown below:

Here

Hence

or

Hence

x |y Ay | Ay | Ay
100

0.128
1.2 1 0.128 0.288
0.416 0.05
1.4 ] 0.544 0.338
0.754 0.05
1.6 | 1.298 0.388
1.142

1.8 ] 244

Xo = 1.0
1
ay = (0.05) = 0.025

1
a; =0.288 ——(0.05) = 0.2630
2

1 1
a, =0.128 ——(0.288) + —(0.05) = 0.128 - 0.144 + 0.0166 = 0.000666
2 3

agu?® + aju + a, = 0, which gives the value of u.
0.02512 + 0.263u + 0.000666 = 0

~0.263%4/(0.263)* - 4(0.025)(0.000666)
2(0.025)

Uy = = (0,-10.5175)

u=0oru=-10.5175

Therefore, x=1.0and x=1.0-10.5175(0.2) =-1.1035

4.19)
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Atx = 1.0,y =0 and at x — 1.1035, we apply the Newton’s forward interpolation formula.

u(u—1)

y=y0+uAy0+ A2y0+WA3yO+N
=0+ (-10.5175)(0.128) + (103175)(=11.5175) (0.288)

2

L C10S17S)1L5175)-125175) o

3D
=3.46132 (maximum value)

4.6 CUBIC SPLINE METHOD

The cubic spline method described in Section 5.7 of Chapter 5 can be used to find the first and second
derivatives of a function. The method requires two steps. In the first step, the cubic splines are constructed
with suitable intervals. In the second step, the first and second derivatives are determined from the appropriate
cubic spline. These steps are illustrated by an example as follows:

Example E4.8

Given y = f (x) = cos x, 0 < x < 7/2. Determine
(a) the natural cubic spline in the interval 0 < x < /4 and /4 < x < /2
(b) the first and second derivatives f’(n/8) and f”(m/8).

Solution:
T T 1 o
Here h=—,y9p=cos0=1,y;=cos —=— and y, = cos—= 0. Also ky =k, = 0.
4 Yo Y1 4 \/5 Y2 4 0 2
From Eq.(5.85) of Sec.5.7 of Chapter 5,
6
ki + 4k + ki = h_z[yi—l =2y +Vial,  i=2,3,...n-1 E.1)
6
or k0+4k1+k2:h—2[yo_2)’1+Yz]
96
or 4k, = F(l - \/5)
or K =2—j(1—\5)= ~1.007247
T

Therefore, the cubic spline is given by Eq.(5.81) of Chapter 5,

I 0,z (x)
=1 ®2)
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3 2
where fo,% (x)= %[%kl _[1_%4—2_6](1} x+%} (E3)

3

yis
4 (Z_x) 1 i
and frs0 =g T"“(E‘%’“](E”} €4
AT ()

Hence f (gj _foﬂ(z;) =-10.339961

” T _ ” E —
f (g)—fw( 8)- 0.503623

4.7 SUMMARY

Numerical differentiation is not a particularly accurate process due to a conflict between round off errors and
errors inherent in interpolation. Hence, a derivative of a function can never be computed with the same
precision as the function itself.

Problems

4.1 From the following table of values, estimate y'(1.0) and y"(1.0):

@ [xT 1] 27 3] 4] 5] 6
y | 4| +3 22|59 120 211

® [x[1]15 2] 25 |3 | 35
y | 5] 6.125 | 9 | 14.375 | 23 | 35.625

© [xT1[2 [3 [4 |5 6
y | 6] 25| 104 | 309 | 730 | 1481

@ |x|1 1.5 2 2.5 3 3.5
y | 27| -55188 | -27.8 | —75.4688 | —163.3 | —=309.5188
© xT1 2 3 4 5 6
y |29 -262]-1579 | =523 | -1307.5 | -2752.6
) [x|1 3 51 7 9 11
y | 52284130 | 367.6 | 798.8 | 1481.2
@ [x 1 1.5 2 2.5 3 3.5

&

—41.0068 | —24.362 | 8.1098 | 64.084 | 152.7363
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4.2 Find the values of y'(3.5) and y"(3.5) from the following table:

4.3

4.4

4.5

4.6

4.7

4.8

(@)

()

©

(d)

Find
(@)

()

1

1.5

2 2.5 3] 35

< [

49

—46.6250

—42 | -34.3750 | 23 | —=7.1250

1

1.5

2

25 3 3.5

< | >

5

6.1250 | 9

14.3750 | 23 | 35.6250

1

1.5

2 2.5 3 3.5

0.5470

0.4536

0.2020 | —0.3284 | —1.2930 | —2.8814

1

1.5

2 2.5 3 3.5

0.2377

0.3108

0.4829 | 0.7941 | 1.2849 | 1.9953

values of y'(6.0) and y"(6.0) from the following table:

1

2

3 4 5 6

—0.5530

—0.7740 | —1.2490 | —2.0380 | -3.1770 | —4.6780

1

2

3 4 5 6

y

0.0858

—0.0099 | -0.3242 | -0.9827 | -2.1094 | -3.8270

A particle is moving along a straight line. The displacement x at some time instance ¢ are given below.
Find the velocity and acceleration of the particle at t = 4.

t

1

3

5 7 9 11

X

0.1405

0.7676

3.5135 | 9.9351 | 21.5892 | 40.0324

Find the values of y'(4) and y"(4) from the following table:

x|0|1] 2] 3] 4
y|5 12 | 17 | 26
Find the values of y'(2) and y"(2) from the following table:
x| 1.5 1.6 1.7 1.8 1.9 2.0
y | 0.3328 | 0.5312 | 0.7651 | 1.0384 | 1.3552 | 1.7198
Compute the values of y'(3) and y"(3) from the following table:
@ [xJ1]2 3 4 5
y|O0|14]1.65|5.673 | 8.0978
® [x]1 ]2 3 4 5
y | 041]065|0.75| 0.87 | 0.98
Compute the values of y'(2) and y"(2) from the following table:
@ [x[1]15]2 [25]3
y 05| 1.1|32]53
® [x] 1[15]2 25 |3
y | 2 3.456 | 5.674 | 8.4592
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4.9 Compute the values of y'(1.2) and y"(1.2) from the following table:

@ TxT1 [11 [12 [13 |14
y | 0.1 034042053 | 0.62

® [x]1 1.1 1.2 1.3 14
y | 0.0254 | 0.0437 | 0.0587 | 0.0670 | 0.0780

© xT1 1.1 12 13 1.4
0.0012 | 0.2342 | 0.5786 | 0.7693 | 0.8934

4.10 Find x for which y is maximum and also find the corresponding value of y, from the table given below:

@ [x] 1] 2] 3] 4 5 6
y|4|+3[22]59]120] 211

® [x[1]15 2] 25 3| 35
y|5]6.125]9|14.375 | 23 | 35.625

© [xT1] 2 3 4 5 6
y | 625|104 | 309 | 730 | 1481

@ [xT]1 1.5 2 2.5 3 3.5
y | 27| -5.5188 | -27.8 | —75.4688 | —163.3 | =309.5188

@ [x[1 2 3 4 5 6
y | 29| -262|-1579 | -523 | -1307.5 | -2752.6

0 Ix]1 |3 5 7 9 11
y | 52]284]130]367.6 | 798.8 | 1481.2

@ [x 1 1.5 2 25 3 3.5
y | —48 | —41.0068 | —24.362 | 8.1098 | 64.084 | 152.7363

4.11 Repeat Problem P5.68 of Chapter 5.
4.12 Repeat Problem P5.71 of Chapter 5.
4.13 Use cubic spline method to find £(2.0) and f'(2.5) from the following table:

x| 2] 3] 5] 6
y | 1334136 | 229

4.14 Repeat Problem P4.7(a) using the cubic spline method.
4.15 Repeat Problem P4.8(a) using the cubic spline method.
4.16 Repeat Problem P4.9(a) using the cubic spline method.

4.17 Repeat Problem P4.9(b) using the cubic spline method.
000



CHAPTER

Finite Differences
and Interpolation

5.1 INTRODUCTION

Interpolation is the technique of estimating the value of a function for any intermediate value of the
independent variable. The process of computing or finding the value of a function for any value of the
independent variable outside the given range is called extrapolation. Here, interpolation denotes the method
of computing the value of the function y = f(x) for any given value of the independent variable x when a set
of values of y = f(x) for certain values of x are known or given.

Hence, if (x;, y;),i1=0, 1, 2, ...., n are the set of (n + 1) given data points of the function y = f(x), then
the process of finding the value of y corresponding to any value of x = x; between x, and x,, is called
interpolation. There are several definitions available for the term interpolation. Hiral defines interpolation as
the estimation of a most likely estimate in given conditions. It is the technique of estimating a past figure.
Theile’s definition of interpolation is “Interpolation is the art of reading between the lines of a table” while
Harper’s definition is “Interpolation consists in reading a value which lies between two extreme points”.

If the function f(x) is known explicitly, then the value of y corresponding to any value of x can easily
be obtained. On the other hand, if the function f(x) is not known, then it is very hard to find the exact form
of f(x) with the tabulated values (x;, y;). In such cases, the function f(x) can be replaced by a simpler, function,
say, 0 (x), which has the same values as f(x) for xg, X1, xp, ..., x,. The function ¢ (x) is called the interpolating
or smoothing function and any other value can be computed from ¢ (x).

If ¢ (x) is a polynomial, then ¢ (x) is called the interpolating polynomial and the process of computing
the intermediate values of y = f(x) is called the polynomial interpolation. In the study of interpolation, we
make the following assumptions:

(a) there are no sudden jumps in the values of the dependent variable for the period under

consideration

(b) the rate of change of figures from one period to another is uniform.

In this chapter, we present the study of interpolation based on the calculus of finite differences. The following

important interpolation formulae obtained or derived based on forward, backward and central differences of
a function are presented.
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(a) Newton’s binomial expansion formula for equal intervals

(b) Newton’s forward interpolation formula for equal intervals
(¢c) Newton’s backward interpolation formula for equal intervals
(d) Lagrange’s formula for unequal intervals

(e) Lagrange’s formula for inverse interpolation

(f) Gauss’s forward interpolation formula

(g) Gauss’s backward interpolation formula

(h) Bessel’s formula

(@) Stirling’s formula

(j) Laplace-Everett’s formula

5.2 FINITE DIFFERENCE OPERATORS

Consider a function y = f(x) defined on (a, b). x and y are the independent and dependent variables respectively.
If the points xg, xy, ...., x, are taken at equidistance i.e., x; = xo + ih, i =0, 1, 2, ...., n, then the value of y, when
X = Xx;, is denoted as y;, where y; = f(x;). Here, the values of x are called arguments and the values of y are
known as entries. The interval £ is called the difference interval. The differences y; — o, Y2 — V1, --+» Y — Y1 are
called the first differences of the function y. They are denoted by Ayy, Ay, ...., etc. That is

Ayo =y1— Yo
Ayr =y2-»
Ayn =Yn — Yn-1 (51)

The symbol A in Eq.(5.1) is called the difference operator.

5.2.1 Forward Differences

The forward difference or simply difference operator is denoted by A and may be defined as

A@) = flx+ h) - fx) (52)
or writing in terms of y, at x = x;, Eq.(5.2) becomes

Af(x) = fx; + h) - f(x) (5.3)
or Ay =Yy — i i=0,1,2,....,n-1

The differences of the first differences are called the second differences and they are denoted by A2y, A2y,
e A2y,

Hence  A%yy=Ay; - Ayp= (2= YD) — (1 = Y0) =2 = 21 + Yo
A%y = Ay — Ay = (13— y) = (2 —yD) =y3 =202 + )1
Adyg = A%y — A%yg = (33 = 22 + y1) = (2 = 291 + o) = ¥3 = 3y2 + 3y1 = Yo
Ay = y4—3y3 + 3 y, -y etc.
Generalising, we have
A" (x) = A[AY(x)], i.e., Aty = A[AYY,],n=0,1, 2, .... 54
Also, A7 (x) = A'[f(x + h) —f(X)] = A (x + h) — A*f(x)
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and A" +1yi = Anyl'+1 — Anyl', n= 0, 1, 2, (55)
where A = identity operator i.e., A% (x) = f(x) and A' = A,

Table 5.1: Forward difference table

X |y | Ay | Ay | Ay | Ay | Ay
Xo | Yo
Ayo
X1 | Y1 AZYO
Ay, ASYO
X2 | Y2 Ay, Ay,
Ay, Ay, Ay,
X3 | Y3 Ay, Ay,
Ay, Ay,
X4 | Ya Ay,
Ay,
X5 | Y5
The forward differences for the arguments x, xy, ...., x5 are shown in Table 5.1. Table 5.1 is called a diagonal

difference table or forward difference table. The first term in Table 5.1 is yy and is called the leading term.
The differences Ayg, A%yg, A3y, ..., are called the leading differences. Similarly, the differences with fixed
subscript are called forward differences.

5.2.2 Backward Differences

The backward difference operator is denoted by V and it is defined as

V&) =f0) —fx-h) (5.6)

Equation (5.6) can be written as
Vyi =¥i—Yi_1 i=n,n-1,....,1. (5.7
or Yy =y1=Y0, VY2 = Y2 = Y15 s VI = Yy = Yn1 (5.8)

The differences in Eq.(5.8) are called first differences. The second differences are denoted by
VZy,, Vys, ..., Viy,.
Hence V2, = V(Vyy) = V(= y1) = Vy, = Vyi = (2 = y1) = (1 = Y0) = 2 = 2y1 + Yo
Similarly, VZy; = y3 — 2y, + y1, V24 = y4 — 2y3 + y,, and so on.
Generalising, we have
Vky, = Vkly, — ykly. | i=non—-1,..,k (5.9)
where Vly =y, Vly =Vy.

The backward differences written in a tabular form is shown in Table 5.2. In Table 5.2, the differences V"y
with a fixed subscript ‘i’ lie along the diagonal upward sloping.
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Table 5.2: Backward difference table

X |y | Vy | Vy | Vy|Vy
Xo | Yo
Vyi
X1 | Y1 vy,
Vy, V3Y3
X2 Y VZY3 V4Y4
Vys V4
X31Y3 V2y4
Vs
X4 | Ya

Table 5.2 is called the backward difference or horizontal table.

5.2.3 Central Differences
The central difference operator is denoted by the symbol § and is defined by

Sf (%) =f(x + h2) —f (x — hi2)
where £ is the interval of differencing.

In terms of y, the first central difference is written as

Oy = Vivi2 — Vi1 (5.10)
where Yiern =[x+ h/2) and y; 1 = f (x; — h/2).
Hence dy1/2 = Y1 = Yo, Oyan
= V2= Vis oo 012
=Yn = Yn-1-

The second central differences are given by
8% = 8yis 12— Byic1p
= iv1 =) = Oi— i)
=Yis1— 2+ yia
Generalising
8"y; = 8" Myiipn = 8" yiip 6.11)

The central difference table for the seven arguments xy, xy, ...., x4 is shown in Table 5.3.
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Table 5.3: Central difference table

X |y 1) 5 5’ 5! 5 5°
X0 | Yo
dyin
X | Y1 52}’1
dyan 833/3/2
X2 | Y2 52}’2 54}’2
dysn 833/5/2 85}’5/2
X3 | Y3 62}’3 64}’3 86}’3
Sy 83}’7/2 85}’7/2
X4 | Y4 62}’4 64}’4
8}’9/2 83}’9/2
X5 | Y5 52}’5
8}’1 1/2
X6 | Yo

It is noted in Table 5.3 that all odd differences have fraction suffices and all the even differences are with
integral suffices.

Example ES.1

(a) Construct the forward difference table and the horizontal table for the following data:

x [1[2[3]4][5
y=fx) [4]6]9]12]17

(b) Construct a forward difference table for the following data

x |0 10 20 30
y |0 0.174 0.347 | 0.518

(¢) Construct a difference table fory =f(x) = x> + 2x + 1 forx=1, 2, 3, 4, 5.
(d) Obtain the backward differences for the function f (x) = x> from x = 1 to 1.05 to two decimals chopped.

Solution:
(@) The forward and the horizontal or backward difference tables are shown in Tables E5.1 (a) and ES.1
(b) respectively.
Table E5.1(a): Forward difference table

x | f(x) | Af(x) | A’f(x) | A*(x) | A*(x)
1] 4
2
2| 6 1
3 1
3] 9 0 3
3 2
41 12 2
5
5017




126 // Numerical Methods //

Table E5.1 (b): Horizontal or backward difference table

x | f(x) | Af(x) | A’f(x) | A*(x) | A*(x)
1 4

21 6] 2

3] 9] 3 1

41 12] 3 0 1

50 17| 5 2 2 3

(b) Table ES.1 (c) shows the forward difference operations.
Table E5.1(c)

x y Ay Ay Ay
0 o
0.174
10 |0174 20.001
0.173 20.001
20 | 0347 20.002
0.171
30 0518

(c¢) Table E5.1(d) shows the forward difference table.
Table E5.1(d)

X x=1(x) | Ay Azy A3y
1 4
9

2 13 12

21 6
3 34 18

39 6
4 73 24

63
5 136
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(d) The following table E5.1(e) shows the backward differences.
Table E5.1(e)

X y = f(x) Vy sz VSy V4y
1.00 1
0.030
1.01 1.030 0.001
0.031 -0.001
1.02 1.061 0.000 0.002
0.031 0.001
1.03 1.092 0.001 -0.001
0.032 0.000
1.04 1.124 0.001
0.033
1.05 1.157

Note the typical oscillations in sign and growth of the entries.

5.2.4 Error Propagation in a Difference Table

Let yo, ¥1, ¥2, ---., ¥, be the true values of a function and suppose the value y, to be affected with an error
€, so that its erroneous value is y4 + €. Then the successive differences of the y are as shown in Table 5.4.

Table 5.4: Error propagation in a difference table

y Ay Ay Ay
Yo
Ay
Y1 Ay
Ay, Ay
Y2 Ay
Ay, Ay,
y3 AZY1 __—“'—‘
Ay; | -7 A3y2 + €
Yo | oe=="7 A’ys + €
=" Ay, + € Ay, - 3e
ys+ € A2y4 -2e
‘‘‘‘‘‘‘ Ays — € Ay, + 3e
Yo el Alys+e
Ay T Alys—€
Y7 AZYf) TTeell
Ay; A3y6
Y8 AZY7
Ays
Yo
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Table 5.4 shows that the effect of an error increases with the successive differences, that the coefficients of
the €’s are the binomial coefficients with alternating signs, and that the algebraic sum of the errors in any

difference column is zero. The same effect is also true for the horizontal difference Table 5.2.

Example E5.2
Table ES5.2 gives the values of a polynomial of degree five. It is given that f(4) is in error. Correct the value
of f(4).
Table E5.2
X 1 2 3 4 5 6 7
y=f(x) | 0.975 | -0.6083 | —3.5250 | —5.5250 | —6.3583 | 4.2250 | 36.4750
Solution:

It is given that y = f (x) is a polynomial of degree five. Hence A%y must be a constant and f(4) is in error.

Let—5.5250 + € be the true or correct value. The difference table is shown in Table E5.2(a).

Table E5.2(a)

x y Ay A’y Ay Aly Ay
1| 0975
21,5833
2| ~0.6083 213333
29167 225+¢
3| -3.5250 09167 + € 2 _4e
2+€ 0.25 -3e 12 + 10e
4| 55250+¢€ 1.1667 — 2€ 10 + 6€
20.8333-¢€ 10.25 + 3¢ Z10- 10e
5| —6.3583 11.4667 + € 0 4c
10.5833 1025 —¢
6| 42250 21.6667
32.2500
71 364750

Since the fifth differences of y are constant, we have
12+ 10e =-10-10e

or 20e =-22

or e =-1.1

Hence f(4)=-55250+¢€ =-5.5250-1.1
or f@) =-6.6250
Example E5.3

The following is a table of values of a polynomial of degree 5. It is given that f (3) is in error. Correct the error.

Table E5.3
x |0 |1 |2 3 4 5 6
y |1 33 | 254 1054 | 3126 | 7777
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Solution:

It is given that y = f(x) is a polynomial of degree 5.

Hence, A%y must be constant; £ (3) is in error.

Let 254 + € be the true value, now we form the difference table as shown in Table E5.3 (a).

Table E5.3 (a)

x |y Ay Ay Ay Aly Ay
0 1
1
1 2 30
31 160 + €
2 33 190 + € 200 — 4e
221 + € 360 — 3€ 220 + 10e
3 | 254 +¢€ 550 —2¢ 420 + 6
1771 — € 1780 + 3e 20 — 10e
4 1054 1330+ € 440 — 4e
2101 1220 — €
5 3126 12550
4651
6 7777
Since the fifth differences of y are constant
220 + 10e =20 - 10e
= 20e =-200
= e =-10
Hence fQ3) =254 +¢
= f(3) =244
Example E5.4
Table E5.4 below shows a difference table. Find the location of error.
Table E5.4
X y=x" A A? A A
5 125 7.651 0.306 0.006 0
5.1 132.651 7.957 0.312 0.006 0
5.2 140.608 8.269 0.318 0.006 | -0.027
5.3 148.877 8.587 0.324 -0.021 0.081
5.4 157.464 8.911 0.303 0.060 | -0.081
5.5 166.375 9.214 0.363 -0.021 0.027
5.6 175.616 9.577 0.342 0.006 0
5.7 185.193 9.919 0.348 0.006
5.8 195.112 10.267 0.354
5.9 205.379 10.621
6 216
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Solution:
The location of an error is obviously centered on 0.060 in the third difference. Instead of 9.214, one has
wrongly entered it as 9.241.

5.2.5 Properties of the Operator A

1. If ¢ is a constant then Ac = 0.

Proof:
Let fx =c
Hence f(x+h) = c, where h is the interval of differencing.
Hence Afx) =fx+h)-fx)=c—c=0

or Ac =0

2. Ais distributive, i.e.,
Alf () £ ()] = Af(x) £ Ag(x).
Proof:  A[f(x) + gW)] = [f(x + h) + g(x + W] = [f(x) + 8] =f(x + h) — f(x) + g(x + h) — g(x) = Af (x) + Ag(x).
Similarly, we have
Alf(x) - g()] = Af (x) — Ag(x)
3. If c is a constant then
Alef(0)] = cAf(x).
From properties 2 and 3 above, it is observed that A is a linear operator.
Proof: Alcf(x)] = cf(x + h) — c¢f(x) = c[f(x + h) — f(x)] = cAfix)
Hence Alcf(x)] = cAf(x).
4. If m and n are positive integers then A”A"f(x) = A™*"f(x).
Proof: A™A"f(x) = (AXAXA ... mtimes) (AXA ... ntimes) f(x) = (AAA ... (m + n) times) f (x) = A" *f(x).
In a similar manner, we can prove the following properties:
5. ALAG +fo(0) + - + (0] = Afi(x) + Afo(x) + -+ + A, (0).
6.  Alf()g)]=f(x) Ag(x) + g(x) Af (x).

; A[f(x)} _ 8N ()= fF()A(x)
' g() g0+ h)

5.2.6 Difference Operators
(@ Shift operator, E:
The shift operator is defined as
Ef(x) = f(x+h) (5.12)
or Eyi = yin (6.13)
Hence, shift operator sifts the function value y; to the next higher value y; ;. The second shift operator
gives
E2f(x) = E[Ef(x)] = E[f(x + )] = f(x + 2h) (5.14)

E is linear and obeys the law of indices. Generalising,
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E'f(x) = f(x + nh) or E"y; = yiip

The inverse shift operator E-! is defined as

ETf() =f(x—h)

In a similar manner, second and higher inverse operators are given by

E2f(x) = f(x—2h) and E7f(x) = f(x — nh)

The more general form of E operator is given by

Ef() = f(x+ rh)

where r is positive as well as negative rationals.

() Average operator, i:

The average operator W is defined as

1
Mf(X)=E[f(X+h/2)+f(x—h/2)]

ie.,

1
ny; = E[yi+1/2 + Y121

(¢c) Differential operator, D:

The differential operator is usually denoted by D, where

d
Df (x) = I f)=f"(x)
X

2

d
D f(x)= W= ()

5.2.7 Relation between the Operators
In order to develop approximations to differential equations, following summary of operators is useful.

Table 5.5

Operator

Definition

Forward difference operator A

Af(x) = f(x + h) — f(x)

Backward difference operator V

VE(x) = f(x) - f(x — h)

Central difference operator §

Of(x) = f(x + h/2) —f(x — h/2)

Shift operator E

Ef(x) = f(x + h)

Average operator |

WUf(x) = 0.5[f(x+h/2) — f(x— h/2)]

Differential operator D

Df(x) = f'(x)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

Here £ is the difference interval. For linking different operators with differential operator D we consider Taylor’s

formula:

fa+h) =fQ)+hf'(x) +%h2f"(X) +o
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In operator notation, we can write it as:

Ef(x) = {1+hD+%(hD)2 +} )

This series in brackets is the expression for the exponential and hence we can write

E = ehP
This relation can be used by symbolic programs such as Maple or Mathematica to analyse the accuracy of
finite difference scheme.

From the definition of A, we know that
Afx) = fx+h)—f(x)
where & is the interval of differencing. Using the operator E we can write

Af(x) = Ef(x) - f(x)

= Af(x) = (E-1) f(x)
The above relation can be expressed as an identity
A=E-1
ie., E=1+A
Proof: EAf(x) = E(f(x+ h) —f(x))

= Ef(x + h) — Ef(x)
=f(x+2h) —f(x+h)
=Af(x+ h)
= AEf(x)

Hence EA = AE.

Example ES.5

Show that Alog f(x) = log {1 L (x)}

f(x)
Solution:

Let & be the interval of differencing
Ja+h)=Ef(x)=(A+1)f0x)=Afx)+fx)

fath) M@
Jf) ()
Taking logarithms on both sides we get

log {—f(x ) } = log [1 + _Af(x) }
f(x) f(x)

= log f(x + h) —log f(x) = log [1 Y (x)}
f ()
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= Alog f(x) = log [1+ 2 (x)}
Sf(x)
Example ES.6
2
Evaluate (A—J X
E
Solution:

Let & be the interval of differencing

&

_J x3: (AZE—I) ¥

E
= (E- 1)2E' %
= (B2-2E+1)E'¥®
= (E-2+EN)

=Ex3-2xX3+E1x3
=(x+hP-23+(x-h)?
= 6xh

AZ
Note: If h =1, then | = | x* = 6x
E

Example ES.7

A2
Prove that e¥ =—¢"-

A’e

Solution:

We know that

Ef(x) =f(x+h)

LX, the interval of differencing being A.

Hence Ee* = e¥th,
Again Ae* = eXth — ¥ = ¢¥(el — 1)
= AZe¥ = ¢* - (el - 1)2
A2
Hence [FJ €' = (A2EY) ¢ = A2e¥ 1 = e h(A2e¥) = e~te(eh — 1)?

e
Therefore, the right hand side = e~e* (e — 1) ————
e (e -1

Relation between E and V :

x+h

=e*

V@) =f() - f(x—h) =f(x) - E'f(x)
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= V=1-E"!
E-1
VETE

Example ES.8

Prove the following (@) (1 +A) (1 -A)=1(®) AV=A-V
Solution:

(@ (1+A)(1-V)fW)=EEYx)=Efx—h=fx)=1 f(x).
1+A)(1-V)=1
() VAf@)=(E-D1-ENf@)=E-D [f&)~fx-h]

Proofs for the Relations among the Operators:

1. A=E-1
Since AF() = f(x + h) — f(x)
or Af(x) = E[f(0)] -fx) =(E -1 f(x)

Since f(x) is arbitrary, so ignoring it, we have
A=E-lorE=1+A

2. V=1-E1
We have Vi) = F() —f(x—h)
=f(0) - E'[f()]
=(1-ENHf(x)
Hence V=1-E1

3. §=FE\2_ g2
We have S[f()] = f(x + h12) — f(x — h2)
=EZ-[f)] - E72- [f(x)]
= (E1/2 _ E’I/Z)f(x)
Hence d =EV2 _ E-12

4, A=EV = VE = 8E?
We have  EV[f(®)] = E[f(x) - f(x — h)]
= E[f(0)] - E[f(x — b)]
=flx+h) —f(x) = Af(x)

Hence EV =A
Again, VE[f(x)] = Vf(x+h) = f(x+h) - f(x) = Af(x)
Hence VE = A

Also,  SE-[f()] = S[f(x + h2)]
=fx+h) - fx) =Af(x)
Hence SEV2 = A
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where

E = P
p=4
dx

2
We know E[f(x)]= f(x+h)= f(x)+hf"(x) +%f”(x) +.--, by Taylor’s series

Hence

Since

Hence

AV = AV =

Since

Hence
Also

Hence

h*D?
21

2
= f(x)+th(x)+%D2f(x)+--- =[1+hD+ +] fx)=e" f(x

E = e,

u =%(El/2 +E*1/2)
ul f ()] = %[f(x+h/2)+ Flr—h/2)= %[E”zf(x)+ EV2 (0] = %[E”2 +EVF ()

u =%(E1/2 +E71/2)

52
AVf(x) = A(f(x) —flx = h)
= A(f(x) - Af(x = h)
= [fe+ 1) = fO] = [f () = f(x = )]
=8 f(x + h/2) — 8ftx — h/2) = &fix)
AV = &
VAf() =V (f(x + 1) = f(x))
= Vf(x + 1) = Vf(x)
= [fOc+ 1) = f)] = [f(x) = fx = )]
= 8- f(x + h12) = 8f (x — h12) = & (x)
VA =&

(1+A)(1-A) =1

LHS.=E

-E'=E-'=E’=1=RHS.
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Hence the result. The relationships among the various operators are shown in Table 5.6.

Table 5.6: Relationship among the operators

E A \% )

E E A+1 (1-v)"'

1+—8*+398 (1+ SZJ
A E-1 A 1-vy'-1

s s (1+152J
v 1-E"' 1-(1+A)" v

Ly [1+182j

4

5| E”-E" AL +M)™ va-v)™”?

u %(EI/Z +E)

|

1+%Aj(l+A)”2

_l _ -1/2
(1 2A)(1 A)

5.2.8 Representation of a Polynomial using Factorial Notation

A polynomial of degree n can be expressed as a fractional polynomial of the same degree. Let f(x) be a

polynomial of degree which is to be expressed in factorial notation and let
) =ag+ ax' + ax® + -+ + ax" (5.20)

where ay, ay, ...., a, are constants and ay # 0 then

Af(x) = Alag + ax! + -+ + a,x"]

= Af(x) = a;+ 2ax! + -+ + rax®b
Hence AN’f(x) = Alay + 2ax" + -+ + ra,x"~D]
or A%f(x) = 2ay + 2 x 3asx! + - + n(n — 1)x(=2

A fx)=ay(n-1)-2x1x" = a)

Substituting x = 0 in the above, we obtain

Af (O A*£(0 A" £(0
f(O):a(), f( ):‘117 f( )202’--%&:%
1! 2! n!
Putting the values of ay, ay, as, ..., a, in Eq.(5.20), we get
2 n
=+ L0 8Oy L ATO

Example E5.9

A%, .
Evaluate (a) = X () Asinx

(©0 Alogx (d) tan’!x.



//  Finite Differences and Interpolation // 137

Solution:

2 2 2
A e)

=(E-24+EDX=EX -2+ EX=(x+1)2-22+(x+1)2=2.

x+h+x) . [ x+h—x h) . h
(b) A sin x = sin(x + h) — sin x = 2 cos sin =2cos| x+ |sin—
2 2 2 2
Hence Asin x = 2 cos (x+ﬁJ sinﬁ
2 2
(© Alog x =log(x + h) — log x = log x+h=log[1+ﬁ}
X X

Hence Alog x =log [1 +ﬁ}

X

R | XAy | R
Atan! = tan!(x + h) — tan”! = tan 1+t h)x Lt ot 22

Example E5.10
Find (a) AZe* (b) Alogx
Solution:
(@) AZe* = A(AeY) = Ale*th — e¥] = Ale*(e — 1)] = (e — 1) Ae* = (el — 1)(e*' — e¥) = (e — 1)e*
Hence AZe* = (el — 1)2e*
) See sol. E5.9 (¢).
Example ES5.11
2
Evaluate (A—J x
E
Solution:

Let i = interval of differencing.
2
(%J P =(AEHYS =(E-1)E' P =(E2-2E+ DE'B =(E-2+E )3 =Ex® - 23 + B3
=@+ h)? -2+ (x—h)? =6xh
Example ES.12
Given Uug = 1,1/[1 = 11, M2=21, M3=28, M4=30,
find Au,.

Solution:
A4M0 = (E - 1)4M0 = (E4 - 4C1E3 + 4C2Ea - 4C3E + 1)1/[0 = E4y0 - 4E3M0 + 6EQM0 - 4EMO + Uy
=uy —4uz + 6uy —4u; + up=30-112+ 126 -44 + 1 = 1.



138 // Numerical Methods //

Example E5.13

Estimate the missing term in the following table.

o
—_
)
%)
N

X
y=fx) | 4|3 |4[?] 12

Solution:
We are given four values, so the third differences are constant and the fourth differences are zero.
Hence  A*(x) = O for all values of x.
That is (E- ¥ (x)=0
(E*—4E3 + 6E2 —4E+ 1)f(x) =0
E*f(x) — AE¥(x) + 6E2f(x) — 4Ef(x) + f(x) = 0
Jx+4)-4fx+3)+6f(x+2)-4fx+ 1) +f(x)=0
where the interval of differencing is 1.

Now substituting x = 0, we obtain

S@ +4f3)+6f2)-4f(1)+f©0) =0
12 +4f3) + 6(4) —43) +4 = 0

or f3 =1
Example E5.14
Find A3(1 =3x) (1 =2x) (1 =x).
Solution:
Let FO=>0-=-30)1-20)1-x)=—6x3+ 11x2 - 6x + 1

Here, f(x) is a polynomial of degree three and the coefficient of x3 is (—6).
Hence A3f(x) = (-6)3!=-36.

Example ES.15
Evaluate A(e?* log bx).
Solution:
Let f(x) = e* and g(x) = log bx.
Hence Af(x) = e?0H) _ gty = e@x(eh — 1)
Ag(x) = log b(x + h) — log bx = 1og(1+ﬁ)
X

Also A(f(x) - g(0) = flx + h) Ag(x) + g(x) - Af(x)

= e+ Jog(1 + h/x) + log bx - e®™(e®h — 1)

= e™- [e® log(1 + hix) + (e*" — 1)log bx].
Example ES5.16

If m is a positive integer and the interval of differencing is 1, show that
A2 M = m(m + 1) xm2)
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Solution:
XM = 1
(x+D(x+2)(x+m)
A[x"™M]= ! - !
x+2)(x+D(x+m+1) (x+1D-(x+m)
B 1 1 1
(x4 2)(xtm)| (x+m+1) (x+1)
—m (=D = (cm)x ™D
(x+D(x+2)(x+m+1)
A(xEm) = (=m)(-=m — D) x"D = m(m + 1)xm-2),
Example ES5.17

Express f(x) = 3x* + x> + x + 1, in the factorial notation, interval of differencing being unity.

Solution:
Here f(x) is a polynomial of degree 3.

We can write

2 3
foo =0+ L0 2SO o 2SO

The interval of differencing is unit and finding the values of the function at x = 0, 1, 2, 3, we get

FO=LfM)=6,f(2)=31f(3)=9%.
The difference table (Table E5.17) for the above values is given below:

Table E5.17
X £(x) Af(x) A’f(x) Af(x)
0 1
5

1 6 20

25 16
2 31 38

63
3 94

From the table we have £ (0) = 1, Af (0) = 5, A%f (0) = 20, A3f (0) = 18.
Substituting the above values in f(x), we get

_151 EZ §3
f) =1+ 5x' + 2!x +3!x,

Hence fx) =33+ 1022 + 5x + 1.
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5.3 INTERPOLATION WITH EQUAL INTERVALS

Here, we assume that for function y = f(x), the set of (n + 1) functional values yy, y, ...., y, are given
corresponding to the set of (n + 1) equally spaced values of the independent variable, x; = xq + ih, i =0, 1,
..., 1, where h is the spacing.

5.3.1 Missing Values

Let a function y = f(x) is given for equally spaced values x, x;, Xy, ...., X, of the argument and yy, y1, ¥, ...,
¥, denote the corresponding values of the function. If one or more values of y = f(x) are missing, we can
determine the missing values by employing the relationship between the operators E and A.

5.3.2 Newton’s Binomial Expansion Formula

Suppose yo, ¥1, ¥2, ---., ¥, denote the values of the function y = f(x) corresponding to the values x,, xy + A,
Xo + 2h, ...., xo + nh of x. Let one of the values of y is missing since n values of the functions are known.

Therefore, we have

Ayg =0

or (E-D" =0 521
Expanding Eq.(5.21), we have

[E" —"C{E™! + "CoE" 2 + -+ + (=1)"]yo =0 (522)

n(n—-1)
or E'o — nE"lyy + Y E2y0+ -+ (=D"yg =0
nn—1)

or Yn = NYp-1 + Y2t o+ (D" =0 (5:23)

2

Equation (5.23) is quite useful in determining the missing values without actually constructing the difference
table.

Example ES.18

Determine the missing entry in the following table.

X 0
y=fx) |1 |4|17|-|97

._.
)
W
N

Solution:
Letyo=1,y =4, y, =17 and y, = 97. We are given four values of y. Let y be a polynomial of degree 3.
Hence Aty =0
or (E-1%y =0
(E*—4E® + 6E> —4E + 1)y, = 0

E%yo— 4E3yg + 6E?yg — 4Eyg + yo = 0
or ya—4y3 + 6y —4y; +yp =0
That is 97— (4y;) +6(17)-44)+1 =0
or y3 = 46.
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Example E5.19
Find the missing entry in the following table.
X 0 2|3 4 5
y=1fx) | 1 11 |- | 189 | 491

Solution:

Here, we are given yy =1, y; =3, y, = 11, y, = 189 and y5 = 491. Since five values are given, we assume that

y is a polynomial of degree 4.

Hence Ay,
or (E - 1)

(E5 = 5E* + 10E3 - 10E% + 5E — 1)y,
or ¥s = 5y4 + 10y3 = 10y, + 5y; = yo

o O O

0

Substituting the given values for y, y;, ...., ¥5 in Eq.(E.2), we get

491 - 5(189) + 10y; — 10(11) + 53)-1 = 0
or 10y; = 550
or y3 = 55.
Example E5.20
Find the missing entries in the following table.
X 0 2 314 5
y=f(x) | 1| -]11 |28 |- 116

Solution:

(E.1)

E2)

Here, we are given y, = 1, y, = 11, y3 = 28, and y5 = 116. Since three values are known, we assume y = f(x)

as a polynomial of degree three.

Hence Aty
or (E- Dy =
That is (E*— 4F3 + 6E2 — 4E + 1)y, =
or Va—4y3+ 6y, —4y +yy =
Va—4(28) + 6(11) — 4y, + 1
Ya—4y =
and Ay, =
or (E-1Py =

or  (E°—5E*+ 10E® — 10E2 + 5E — 1)y, =

V5 —5y4 + 10y; — 10y, + Sy, —yp =
116 — 5y, + 10(28) — 10(11) + 5y; - 1 =

or =Sy4 + 5y;
Solving Egs.(E.1) and (E.2), we obtain
y1 = 4 and Y4 = 61.

ED

E2
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5.3.3 Newton’s Forward Interpolation Formula

Let y = f(x), which takes the values yg, ¥, y», ...., ¥, that is the set of (n + 1) functional values yg, y;, ¥2, ...,
y, are given corresponding to the set of (n + 1) equally spaced values of the independent variable,
Xi=xq+ih,i=0,1,2, ..., n where h is the spacing. Let ¢(x) be a polynomial of the n™* degree in x taking
the same values as y corresponding to x = Xy, Xi, ...., X,. Then, ¢(x) represents the continuous function
y = f(x) such that f (x;) = ¢(x;) for i =0, 1, 2, ...., n and at all other points f(x) = 0(x) + R(x) where R(x) is called

the error term (remainder term) of the interpolation formula.

Let O(x) = ap + a;(x — xp) + a)(x — xp)(x — x1) + az(x — xp)(x — x1)(x — x) + -+

+ a,(x — xp)(x —x)(x — x3) - (X = X,_1)

and O(x) =y i=0,1,2,.....n
The constants ag, a;, ay, ...., a, can be determined as follows:
Substituting x = xg, X1, Xy, ...., X, successively in Eq.(5.24), we get

ao = Yo

Y1 = ao + ai(x; — xo)
or Y1 = Yo+ aj(x; —xp) [using Eq.(5.26)]

Y2 = ag + ay(x; — xp) + ax(xy — xp)(xp — x1)

or Y2 = Yo — a1(xp — Xp) = ax(x; — xp)(x — x1)
(y1 = ¥o)
or ()’2—}’0)—1—0(x2_xo):az(xz_xo)(xz_xl)
(xl _xo)
(y1 = ¥9)2h
or (yz_)’o)—%:azzhh
o LoDty Ay
g 2h? 2142
Similarly, we obtain
LNy _ A"
T T

Hence, from Eq.(5.24), we have

2

O(x) = y0+%(x—x0)+ i!;g (x=x)(x—x)+ i!;f (x = x)(x = x)(x = X,_,)
Let X =Xy + uh
or X —Xxy =uh
and x—-x1=@-x9)—(x;—xp)=uh—-h=w-1h

X=Xy =X—x1)—(x—x1) =(w—-1Dh-h=(u-2)h, etc.

5.24)
(5.25)

(5.26)

(5.27)

(5.28)

(5.29)

(530)
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Using the values from Eq.(5.30), Eq.(5.29) reduces to

wu=l) o u=D@=2) 5w (n=D)
2! 3! n!
The formula given in Eq.(5.31) is called the Newton’s forward interpolation formula. This formula is used to

interpolate the values of y near the beginning of a set of equally spaced tabular values. This formula can
also be used for extrapolating the values of y a little backward of y.

O(x) = yo +uly, + Yo Yo (3.31)

Example ES5.21

Given that /15500 = 124.4990, V15510 = 124.5392, /15520 = 124.5793 and /15530 = 124.6194, find the value

of /15516 .

Solution:

The difference table is given below:

X y=x Ay Ay
15500 x, | 124.4990 y,
0.0402
15510 | 124.5392 0 A’y
0.0401
15520 | 124.5793 0
0.0401

15530 124.6194

Here Xo = 15500, & =10 and x = 15516
x—xy 15516-15500

u = 1.6
h 10
Newton’s forward difference formula is
u(u—1
S(x) =y +uly,+ ( o1 )Azyo +
or f(15516) = 124.4990 + 1.6(0.0402) + 0 = 124.56323

Example E5.22
A second degree polynomial passes through the points (1, -1), (2, -2), (3, —1) and (4, 2). Find the polynomial.

Solution:

The difference table is constructed with the given values of x and y as shown below:

x|y [Ay | Ay | Ay
1] -1

1
22 2

1 0
31 2

3
4] 2
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Here xo=1,h=1,y)=-1, Ayy=—1 and A%y, =2

w=""20— (x_1)
h
From the Newton’s forward interpolation formula, we have
u(u—1
y=f(x)=yytuly,+ (2' )A2y0+.-.
-D(x-1-1
or f(_x):—1+(_x—1)(_1)+%x2=x2_4x+2

Example E5.23

Find y = &3 for x = 0.05 using the following table.

x [0]0.1 0.2 0.3 04
e™ | 1| 1.3499 | 1.8221 | 2.4596 | 3.3201

Solution:

The difference table is shown in below:

X y= e Ay A2y A3y A4y
0.00 | 1.0000
0.3499
0.10 | 1.3409 0.1224
0.4723 0.0428
0.20 | 1.8221 0.1652 0.0150
0.6375 0.0578
0.30 | 2.4596 0.2230
0.8605
0.40 | 3.3201

We have xy = 0.00, x =0.05, 7 =0.1

x—xy 0.05-0.00
h 0.1

Using Newton’s forward formula

Hence u= 0.5

u(u—1)
2!

u(u—1)wm-2) 3
T

4 u(u—1)(u—-2)(u-3) X

AZ)’o+ 0 a1

S(xX)=yo +uly, +

£(0.05) = 1.0 + 0.5(0.3499) + W(OJZZM £ 0903 _61)(0'5 ~2 (0.0428)

+ 0.5(0.5-1)(0.5-2)(0.5-3)

0.0150
24 ( )

f@0.05)=1.16172

yo + cee
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Example ES.24

The values of sin x are given below for different values of x. Find the value of sin 42°.

X 40 45 50 55 60
y=f(x)sinx | 0.6428 | 0.7071 | 0.7660 | 0.8192 | 0.8660

Solution:

x = 42° is near the starting value x, = 40°. Hence, we use Newton’s forward interpolation formula.

X | y=sinx Ay Azy A3y A4y
40° | 0.6428
0.0643
45° 1 0.7071 —0.0054
0.0589 —0.0004
50° | 0.7660 —0.0058 0
0.0531 —0.0004
55° 1 0.8192 —0.0062
0.0469
60° | 0.8660

X—xy 42°-40°
h 5
We have y, = 0.6428, Ay, = 0.0643, A%y, = —0.0054, A3y, = —0.0004

0.4

u=

Putting these values in Newton’s forward interpolation formula we get

u(u—1) 5 +u(u—1)(u—2)A3
2!

f(x)=yo +uly, + A%y, Y Yo+

F(42°) = 0.6428 +0.4(0.0643) + %(—0.0054) ,24-(04 _61)(0‘4 =2 (-0.0004) = 0.66913

Example E5.25

The profits of a company (in thousands of rupees) are given below:

Year (x) 1990 | 1993 | 1996 | 1999 | 2002
Profity =f(x) | 120 | 100 | 111 | 108 99

Calculate the total profits between 1990-2002.

Solution:

The forward difference table is constructed as shown further:



146 // Numerical Methods //

2 Y | Ayp | A’yg | Ay | Ay,
1990 | 120
=20
1993 | 100 31
11 —45
1996 | 111 -14 53
-3 8
1999 | 108 -6
-9
2002 | 99
To calculate profits at 1991:
X=Xy
Let X=1990,x=1991,h=3, p= =0.33

Using Newton’s forward interpolation formula we obtain

y(1991) = y, +uly, + M(MZT D Ay, + ulu _1;?[ =2 Ay, + ulu - 1)(u4_' 2u=3) Ay,
— 120+0.33(-20) + 0.33(0;3 -1 G+ 0.33(0.33 —61)(0.33— 2) (-45)
+ 0.33(0.33-1)(0.33-2)(0.33-3) (53)=104.93
24
or 104.93 thousand rupees.

As an example, consider the difference table (Table E5.25) of f(x) = sin x for x = 0° to 50°:

Table E5.25
x(deg) | f(x)=sinx A A’ A A A
0 0 0.1736
10 0.1736 0.1684 | —0.0052 | —0.0052
20 0.3420 0.1580 | —0.0104 | —0.0048 | 0.0004 0
30 0.5000 0.1428 | —0.0152 | —0.0044 | 0.0004
40 0.6425 0.1232 | —0.0196
50 0.766

Since the fourth order differences are constant, we conclude that a quartic approximation is appropriate. In
order to determine sin 5° from the table, we use Newton’s forward difference formula (to fourth order); thus,
. ) 5-0 1
taking x;= 0, we find a =0 2
Hence sin 5° = sin 0° + %2 (0.1736) + (*2)(Y2)(—"2) (-0.0052) + (1/6)(V2)(—"2)(-3/2)(-0.0052)
+ (124)(2)(—2)(-3/2)(-5/2)(0.0004) = 0 + 0.0868 + 0.0006(5) — 0.0003(3) — 0.0000(2) = 0.0871.
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In order to determine sin 45° from the table, we use Newton’s backward difference formula (to fourth order);

45-40 1

10 2

11

22
=0.6428 + 0.0714 — 0.0057 — 0.0015 + 0.00001

Example E5.26

If f(x) is known at the following data points

x|0|1] 2] 3] 4
£ |1]7]23)|55]109

Find £(0.5) using Newton’s forward difference formula.

thus, taking x;= 40, we find b =

0.0048) + — ~ 227 00004
(=0.0048) + 57 5 5 7 7 0:0004)

N | =
N | W
N | L

1 3
and sin 45° = sin 40° + (0.1428) + (- 00152) +

1
6
=0.

)

071

Solution:

Forward difference table is prepared as shown in Table E5.26.

Table E5.26
X f Af Af A’f A'f
0 1
6
1 7 10
16 6
2 23 16 0
32 6
3 55 22
54
4 109
By Newton’s forward difference formula
a(a-1 ata-1)(a-2
f(xy +ah)= {f0+aAf0+ (2' )A2f0+ ( ;'( )A3f0}
To find £(0.5):
At x=05,a=x-x)/h=(0.5-0)/1=0.5
5(0.5-1 S5(0.5-1)(0.5-2
Hence f(0.5) = {1+0.5x6+ 0 5(02? )10+ 0.50.5 3')(0 >-2) 6}

=1+3+25 x (= 0.5) + (- 0.25)(- 1.5) = 3.125

Example E5.27
Find £ (0.15) using Newton backward difference formula from Table E5.27.
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Table E5.27
X f(x) Vf V2§ V3t vVt
0.1 0.09983
0.09884
0.2 0.19867 —0.00199
0.09685 —0.00156
0.3 0.29552 —0.00355 0.00121
0.0939 —0.00035
0.4 0.38942 —0.0039
0.09
0.5 0.97943
Solution:
Using Newton-Gregory’s formula:
Flo)= [ fanVf + b(bz-:- D g2 4 b(b+13)$b+ 2) o3 P b(b+ 1)(b44; 2(b+3) 4 fn}
where in present case: h=0.1, n=5
b=(x-x,)/h=(0.15-0.5)/0.1= -3.5
-3.5(-3.5+1 -3.5(-3.5+1)(-3.5+2
Hence f(0.15)=0.97943 + —3.5x0.09 + % (—0.0039) + ( 3 ')( ) (—0.00035)

, T35(35+1)(-35+2)(-3.5+3)
41

=0.97943 — 0.315 — 0.01706 + 0.000765625 + 0.00033086 = 0.14847

(0.00121)

5.3.4 Newton’s Backward Interpolation Formula

Newton’s forward interpolation formula is not suitable for interpolation values of y near the end of a table of
values.

Let y = f(x) be a function which takes the values y, y;, 5, ...., ¥, corresponding to the values xq, xi, X,
...., X, of the independent variable x. Let the values of x be equally spaced with & as the interval of
differencing.

That is xX;=xo+ih, i=0,1,2,...,n

Let ¢ (x) be a polynomial of the n”* degree in x taking the same values of y corresponding to x = xg, x;,
..., X,,. That is, 0(x) represents y = f(x) such that f(x;) = 0(x;), i =0, 1, 2, .... Hence we can write ¢(x) as
o(x;) =y, i=nn-1,...,1,0
and Xp_i = Xp_ihs i=1,2,....n

Let “0'(x) = ag + a1(x — X)) + ax(x — X,)(X = X1) + =+ + @y (X = X)) (X = X)) =+ (X = Xp) (6.32)
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Substituting x = x,,, x,_1, ...., X1, Xy successively, we obtain
ag = Yn (5.33)
Yn-1 = 4o + al(xn—l - xn)

a = Yn-1"Yn — Vyn
or 1 X, %, h (5.34)
Similarly, we obtain

v?2 &
ay=—21 a, =-—21 (5.35)

ST

Substituting the values from Eqs.(5.33), (5.34) and (5.35) in Eq.(5.32), we get

vy, vy, V'
o(x)=y,+ T(x -x,)+ e (x=2x,)(x = x, )+t —— (=X, )(x = 2x, ) (X = Xp) (5.36)
! n!
Now, setting x = x,, + vh, we obtain
X —x, =vh
X—X,.1 =W+ Dh
x—xpg=W+n-1h
Hence, Eq.(5.36) reduces to
1 -1
o(x)=y, + v(vz-l'- ) szn +otv(v+1) ---wvm (5.37)
! n!
where y=2""n
h

The formula given in Eq.(5.37) is called the Newton’s backward interpolation formula. This formula is used
for interpolating values of y near the end of the tabulated values and also used for extrapolating values of
y a little backward of y,.

Example E5.28

Calculate the value of f(84) for the data given in the table below:

X 40| 50| 60| 70| 80| 90
f(x) | 204 | 224 | 246 | 270 | 296 | 324

Solution:

The value of 84 is near the end of Table E5.28. Hence, we use the Newton’s backward interpolation formula.
The difference table is shown below.
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Table E5.28
x |[fx) | v | V|V |V|V
40 | 204
20
50 | 224 2
22 0
60 | 246 2 0
24 0 0
70 | 270 2 0
26 0
80 | 296 2
28
90 | 324

We have x, = 90, x = 84, h = 10, 1, = y, = 324, V1, = Vy, = 28, V2y, = 2 and fh = fh.
V3n=v4n=VSYn=0,

I dat 84-90 - _06
h 10
From Newton’s backward formula
F@4) =1 +uve, + 20D g2,

(=0.6)(-=0.6+1D

f(84)=324-0.6x28+ 2=324-16.8-0.24 =306.96

Example E5.29
Use Gauss forward formula to find y at x = 30 given the following table of values:
x |21 25 29 33 37
y | 18.4708 17.8144 | 17.1070 | 16.3432 15.5154

Solution:
We construct the following difference Table E5.29:

Table E5.29
X y Ay Ay Ay Aty
xo—2h=21 | 18.4708
—0.6564
xo_h=25 | 17.8144 —0.0510
—0.7074 —0.0054
X = 29 17.1070 —0.0564 ~0.002
—0.7638 —0.0076
x+h+33 | 16,3432 —0.0640
—0.8278
xo+2h=37 | 155154
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Here h=4,u=

u = 0.25 lies between O and 1.

Hence, the Gauss’s forward formula is suitable. Substituting in the Gauss’s interpolation formula

uwm-1 , (u+Dum-1 A3y +(u+1)u(u—1)(u—2) A4y

Yy =Yy +uly, +TA ya+t 3 -1 a1 ot
We get Yoos = £(0.25) = 17.1070 + (0.25)( 0.7638) +
029079 0 0seay, 1:290025(075)
2 6
1.25)(0.25)(-0.75)(-1.75
% (—0.0076) + ( X )(24 X ) (-0.0022) = 16.9216

Example E5.30

From the following table estimate the number of students who obtained marks in computer programming
between 75 and 80.

Marks 3545 | 45-55 | 55-65 65-75 75-85
No. of students 20 40 60 60 20

Solution:

The cumulative frequency table is shown in Table E5.30.

Table E5.30
Marks less than | No. of students | Vy | VZy | Vly | V'y
x) 2
45 20
55 60 40
65 120 60 | 20
75 180 60 0]-20
85 200 20 | -40 | 40 | =20

To find the number of students with marks less than 80

X—X
Let xn=85,_x:80’h=10,p= hn=_0.5

Then using Newton’s backward interpolation formula we obtain

(v+1) szn + viv+1D)(v+2) V3yn + viv+D(v+2)(v+3) V4y,,
2! 3! 4!
-0.5(-0.5+1) -0.5(-0.5+1)(-0.5+2)

=200+ (-0.5)(20) + 5 (—40) + g (=40)

A%
Y=Y, +pVy, +

4 0505+ 1(-0.5+2)(-0.5+3)
24

(~20) = 198.2813
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So number of students getting marks in computer programming between 75 and 80
=198 - 180 =18.

5.3.5 Error in the Interpolation Formula

Let ¢(x) denote the interpolating polynomial. Also, let the function f(x) be continuous and possess
continuous derivatives within the interval (xo, x,,). Now, defining the auxiliary function F(¥) as

(= x)(t—x)(t—x,)

(x=xp)(x—x)(x—x,)

F@)=f®)=00)={f(x) -9} (5.38)

The expression (¢ — xy) (t — xy)--- (f — x,,) is a polynomial of degree (n + 1) in ¢ and the coefficient of # = 1.

Hence, the (n + 1)t derivative f polynomial is (n + 1)!. That is

(n+1D)!

F"™ (@)= "E)~{f(0)-000) = (539)
(x=xp)(x—2x)(x—x,)
n+l
or f(0)=0(x) = f—@(x —X)(x = xp)+(x = x,) (5.40)
(n+1)!
Let R(x) denote the error in the formula. Then
R(x) = f(x) — 0(x)
AN ()
Hence R(x)=m(x—xo)(x—xl)---(x—xn)
Since x — xg = uh or x —x; = (u— )h, .... (x — x;,) = (u — n)h where h is the interval of differencing, we have
n+l pn+l
Error R(x)= wu(n -Du—-2)--(u—n)
(n+1)!
Now, employing the relation
D=1a
h
we have Dl = LA"“
hn+1
An+1
or Frg =2 T (541)
n+1
The error in the forward interpolation formula is given by
n+l
RO = o= D= D) (542

In a similar manner, by taking the auxiliary function F(#) in the form

(t=x,)t—x,_)(t—xy)

(x=x,)(x=x,_;)(x—xp)

F()=f@) =00 —{f(x)=0(x)}
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and proceeding as above, we obtain the error in the Newton’s backward interpolation formula as

n+l

= yn e
R(x) = (n+1)!u(u+1) (u+n) (543)

where u=

Example E5.31

Using Newton’s forward interpolation formula find the value of cos 52° from the following data and estimate
the error.

X 45° 50° 55° | 60°
y=cosx | 0.7071 | 0.6428 | 0.5736 | 0.5

Solution:

The difference table is given below:

X | y=cosx Ay A’y Ay

45° 1 0.7071
—0.0643

50° | 0.6428 —0.0049
—0.0692 0.0005

55° | 0.5736 —0.0044
—0.0736

60° | 0.5

Here  xp=45° x; = 52°, yo= 0.7071, Ay = — 0.0643, A2y, = — 0.0049 and A3y, = 0.0005.

xX—x, 52°-45°
u= = =

h 5°

14

From Newton’s forward interpolation formula

u(u—1) Azy +u(u—1)(u—2) A?

y = g +uly, + Y 0 3 Yot
Hence  y= f(52)=0.7071+1.4(-0.0643) + W(—0.00@) LdHd4 _61)(1 4-2) (0.0005)
=0.615680
Error = uu - 1)(un—+21)---(u ") A"y, where n=2.
_ ulu —1;?1 -2 Ay = 1.4(1.4—;)(1.4 =2 0,0005)

Error = —0.000028
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54 INTERPOLATION WITH UNEQUAL INTERVALS

The Newton’s forward and backward interpolation formulae are applicable only when the values of n are
given at equal intervals. In this section, we present Lagrange’s formula for unequal intervals.

5.4.1 Lagrange’s Formula for Unequal Intervals

Let y = f(x) be a real valued continuous function defined in an interval [a, b]. Let xq, x1, x5, ...., X, be
(n + 1) distinct points which are not necessarily equally spaced and the corresponding values of the function
are Yo, Vi, ----» Yu. Since (n + 1) values of the function are given corresponding to the (n + 1) values of the
independent variable x, we can represent the function y = f(x) is a polynomial in x of degree n.

Let the polynomial is represented by
J @) = ap(x — x)(x = X9)-++(x = X,) + a1 (x = Xp)(x = X9)- -+ (X — X)
+ ap(x — X)X — X)X = x3) (X = x,) + 00+ (X = Xo) (X = Xp)- - (X = Xpy) (544
Each term in Eq.(5.44) being a product of n factors in x of degree n, putting x = x; in Eq.(5.44) we obtain
J(x) = ag(xg — x1)(xp = x2)-++ (X — X)
J(x)

(X = X )(Xg = X3)++(Xg = X,)

or ay =

Putting x = x; in Eq.(5.44) we obtain
SO = ai(x; — xp)(x1 — x2)---(x1 — x;,)

f(xl)

(4 = x0)(xg = xp)-(x3 = x,,)

or a =

Similarly putting x = x,, x = x3, x = x,, in Eq.(5.44) we obtain

f(xz)

(% = 20)(xy = xp)-(x3 = x,,)

a, =

f(x,)

(xn - xO)(xn - xl)m(xn - xnfl)

and a, =

Substituting the values of ay, a;, -, a, in Eq.(5.44) we get

(x—x)(x—xp)(x—x,) (x—=x5)(x—x5)-(x—x,)

y=f(x)= (X — X)) (% = %3 )+ (xg — X, ) f(x)+ T —— F)+
(= %) (x = x))+(X = X, ;)
(x, = x0)(x, = x)+(x,, = x,1) Fx) (5.45)

The formula given by Eq.(5.45) is known as the Lagrange’s interpolation formula.
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Example E5.32

Apply Lagrange’s interpolation formula to find a polynomial which passes through the points (0, —20),
(1, -12), (3, —20) and (4, —24).

Solution:

We have xp=0,x; =1, x =3, x3 =4, yp =f(xg) =20, y; =f(x1) =12, y, = f(x) =20 and y; = f(x3) = —24.

The Lagrange’s interpolation formula is

(x =2 )(x — X)) (x — x3) Fx)+ (x = xp)(x = % )(x — x3)
(g = x)(xg = X)(xg — X3) (g = X0)(x = x)(x; = x3

fx)= )f(xl)

(x—xp)(x —x)(x — x3) Flay)+ (x—xp)(x—x)(x—x,)

(x5 = xp)(xy = x;)-+(2xy = x3) (23 = X0 ) (3 = x)(x3 = x3)

Hence = GTDEZIED ) GZO=Ix=d) g,
O=D(O0=30—4) I=01-3)1-4)

+ (x=0)(x—-1D(x—4) (=20)+ x=0)(x-D(x-3) (—24)
B-03-D(3B-4) 4-0)4-1)(4-3)

f(x3)

or f(x) = x3 = 8x% + 15x + 20 is the required polynomial.

Example E5.33

Using Lagrange’s interpolation formula find a polynomial which passes the points (0, —12), (1, 0), (3, 6),
4, 12).

Solution:
Wehave xg=0,x1=1,x=3,x3=4,y0=f(x0) =12, y1 = f(x) =0, y = f(x2) = 6, y3 = f(x3) = 12.

Using Lagrange’s interpolation formula we can write

(x —x)(x — X )(x — x3) Flxg)+ (x = xp)(x — % )(x — x3)
(9 = x)(xg = x)(xg = x3) (x5 = X)) = x)(x = x3

fx)= )f(xl)

(0 = xp)(x = x)(x = x3) (x = xp)(x = %) (x = x,)
foo)+
(x5 = x9) (X% = x;)(x, = X3) (x3 = x0) (x5 = X)) (23 = x3)

Substituting the values, we get:

3 (x—l)(x1—23)(x—4) %12 — (x—O)(x;3)(x—4) <0+ (x—O)(x—61)(x—4) <6

f(x3)

fx)=

N (x=0)(x—-D(x-3) v
12

12=-(x-Dx-3)(x-D+-(x-0)(x-Dx-4H+(x-0)(x—-1D(x-3)

Example E5.34

Using Lagrange’s interpolation formula, find the value of y corresponding to x = 10 from the following data.

X 5|1 6 9| 11
y=1(x) | 380 | -2 | 196 | 508
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Solution:

The Lagrange’s interpolation formula is

(x=x)(x = x)(x = x3) (x = x5)(x = x)(x = x3)

(o =3 = 1) (X = X3) *° (g =X )y — )% = x5) "

y=fx=

(x = xp)(x = x)(x —x3) (x = xp)(x = x)(x — x,)

(X = X) (0 =) = X3) " (= X)X — X)X = xy)

ED

Here, we have xg =5, x; =6, x, =9, x3 = 11, yp = 380, y; =2, y, = 196 and y; = 508. Substituting these values
in Eq.(E.1), we get

(10-6)10-9)10-11) , 10-5)10-9)10-11)

T =6 -96-10 O 56961
L10-5)10-6)10-1D 0 10-510-6)10-9) (o
9-5)9-6)9~11) (11-5)11-6)(11-9)
or £(10) = 330.

5.4.2 Hermite’s Interpolation Formula

Hermite’s interpolation formula provides an expression for a polynomial passing through given points with
given slopes. The Hermite interpolation accounts for the derivatives of a given function. Let x;, f;, fi’
(fori=0, 1, 2,..., n) be given.

The polynomial f(x) of degree (2n + 1) for which f(x;) = f; and f'(x;) = f'; is given by:
FO =X hj ) f;+ X (0 f;
j=0 j=0

40 (x;)
where h(x) = 1—m(x—xj)[Lj @I

hy(x) = (x=x)[L; ()]
(%) = (x = Xg) (x = x7)+++(x — x,)
4 (X)
L. [P A
10 G )

It is used to write the interpolation formulae in finite element analysis. Famous cubic polynomials are derived
from two points with their slopes. It is used to represent bending motion of a beam. For example, in the case
of a beam finite element, suppose we need to obtain cubic polynomials that satisfy the following cases:

(1) Consider: y = ax? + bx? + cx +d in [0, 1].
(2) Apply conditions
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Case 1:
Case 2:
Case 3:
Case 4:

>

il

1
0
0,
0

~ e = =
I

i

@x=0
y'=0
y=1
y'=0
y'=0

@x=1
y=y'=0
y=y'=0
y=1, y'=0
y=0, y=1

(3) Solve each case for a, b, c, d.

Then we obtain:

y(x) =14+ 0x —1x* + 2x% (x = 1) = 2x° = 3x% +1

() =0+1x—1x" +Ix* (x — 1) = x° = 2x% +x
y(x) = 0+ 0x +1x? = 2x% (x—1) = —2x° + 3x7

y(x) = 0+0x+0x* +1x*(x—=1) = x" —x

2

These polynomials are plotted in Figure 5.1.

For cases involved with higher order derivatives, the principle is same. When y™(x;) is used, all lower
derivatives and y(x;) itself must be included in the constraints. For example, you can not have y'(x;) as a
constraint but not y(x;), nor y®(x;) but not y'(x;) and y(x;).

0.8
1
0.6
0.8
0.4
0.6
y 02
0.4
0
0.2
case 1 -0.2
-0.4
0 0.5 1
X
0.8
1
0.6
0.8
0.4
0.6
y 0.2
0.4
0
0.2 case3
-0.2
0
-04
0 0.5 1

X

O data points
— Hermite Polynomial

e = o0

case 2

case 4

0 0.5 1

Fig. 5.1: Hermite interpolation
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Example E5.35

Construct displacements in a beam element from Hermite polynomials.

Solution:

Consider the beam of length L. The Hermite polynomials are:

X } X 2
NI(X)=2(2) —3(2) +1

3 2
Ny()=25-2" 4 x
r L

X 3 X 2
N3(x)=—2(zj +3(zj

3 2
X X

Ny(x)=——-—
W=
These polynomial interpolation functions may be thought of as the fundamental modes of deflection. The
deflection w(x) of any statically loaded beam can be written in terms of these modes as
w(x) = N\W, + N,0, + N;W, + N,0,

where the subscripts associate quantities with positions (or nodes) 1 and 2 on the beam and
W;, 0,, i=1, 2, are the deflection and slope, respectively, at each node.

5.4.3 Inverse Interpolation

In interpolation, we estimate the missing value of the function y = f (x) corresponding to a value x intermediate
between two given values. In inverse interpolation, we interpolate the argument x corresponding to an
intermediate value y of the entry.

5.4.4 Lagrange’s Formula for Inverse Interpolation
In Lagrange interpolation formula y is expressed as a function of x as
(= x)(x = xy)-(x = x,) (= xp)(x = xp)-(x = x,)

(o — 1) =) (g %) 0 (6 = %) — %) (% = %,)

y=f(x)=

L+

(x=xp)(x—x)(x—x,_;)

(xn - xO)(xn - xl)m(xn - xnfl)

Vn (546)

By interchanging x and y in Eq.(5.46) we can express x as a function of y as follows:

__O=WO=y)=y) L Y)Y ¥)(y = y)
(Yo =YD (Yo = ¥2)-(¥o = ¥) 0 (1 = Y0 = Y2 ) (¥ = ¥y)

X

(y=y)y =) (y=Y,-1)
Op =)V = YD)V = V1)

Equation (5.47) can be used for inverse interpolation.

547)
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Example E5.36

The following table gives the values of y corresponding to certain values of x. Find the value of x when
y = 167.59789 by applying Lagrange’s inverse interpolation formula.

X 1] 2] 5] 7
y=f(x) | 1| 12] 117 | 317

Solution:
Here Xo=Lx1=2,%=5x=Ty=1,y1=12,y, =117, y3 =317 and y = 167.59789.

The Lagrange’s inverse interpolation formula is given by

(=y)=y)(y—y;) . (Y= Y)Y = y2)(y—y3)
(Yo =YY = ¥2)(¥p — ¥3) 0 (= y0)(y = ) (3 — ¥3) !

Y=y =yD(y—y3) P =) =yD=y) B
(2 = Y0)Y2 = 2)(¥2 — ¥3) ? (3 = Y0)(¥3 = y)(¥3 — ¥2) ’

. (167.59789 ~12)(167.59789 ~117)(167.59789 ~317)

Hence @
(1-12)A-117)A-317)
+ (167.59789 -1)(167.59789 —117)(167.59789 — 317) 12)
(12-H12-117)12-317)
(167.59789 -1)(167.59789 —12)(167.59789 - 317) a17)
(117-D(A17-117)(117 -317)
(167.59789 - 1)(167.59789 —12)(167.59789 —117) 317)
B17-DH(B17-12)(317-117)
or x =5.65238.

5.5 CENTRAL DIFFERENCE INTERPOLATION FORMULAE

In this section, we derive some important interpolation formulae by means of central differences of a function,
which are quite frequently employed in engineering and scientific computations.

In particular, we develop central difference formulae which are best suited for interpolation near the
middle of a tabulated data set. The following central difference formulae are presented:
1.  Gauss’s forward interpolation formula
Gauss’s backward interpolation formula
Bessel’s formula
Stirling’s formula
Laplace-Everett formula

EAE I 0
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Let the function y = y, = f(x) be given for (2n + 1) equispaced values of argument xo, xo £ &, xo £ 24, ...., X,
x;,. The corresponding values of ybe y; (i = 0, £ 1, +2, ..., £ n). Also, let y = y, denote the central ordinate
corresponding to x = xy. We can then form the difference table as shown in Table 5.7. Table 5.8 shows the
same Table 5.7 written using the Sheppard’s operator 8, in which the relation = AE-12 was used. Tables 5.6

and 5.8 are known as central difference tables.

Table 5.7: Central difference table

X |y | Ay | Ny | Ny | Ay | Ny | Ay
Xo—3h | y;
Ay 3
Xo—2h |y, A’y 4
Ay, A3y_3
Xo—h |y, Ay, Ay
Ay 4 A3y_2 Asy_3
Xo Yo Ay Aly, A%y,
Ay A3y_1 Asy_z
Xg+h Y1 A2y0 A4y_1
Ay, A3y0
Xo+2h | y, A%y,
Ay,
Xo+3h | y3

Table 5.8: Central differences written in terms of Sheppard’s operator &

X y Oy Sy Sy Sy &y | &%
xo—3h | y3
Oy_sp
Xo—2h | y,, &%y,
6)’-3/2 83}’-3/2
Xo—h |y, 52}’-1 84}’—1
dy_1n 83}’-1/2 85}’—1/2
Xo Yo &yo 8o 8o
Sy 83}’1/2 85}’1/2
Xo+h |y &%y, 'y
8}’3/2 83}’3/2
Xo+2h | y, 8%y,
8ysn
Xo+3h | y3

5.5.1 Gauss’s Forward Interpolation Formula
The Newton’s forward interpolation formula is

u(u—1)
2!

u(u—1)wu-2) A3

2
A%y + 3

y=f(x)=yy+uly, +

X0

X . .
where u = and x = x is the origin.

Yot

s

(548)
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In deriving the Gauss’s forward interpolation formula, we assume the differences lie on the bottom solid
lines in Table 5.9 and they are of the form

Yp=Yo+t GlAy() + GzAzy,l + G3A3y,1 + G4A4y,2 + - (549)

Table 5.9: Gauss’s forward and backward interpolation formulae

X |y | Ay | Ny | Ay | Ay | Ay | Ay

X4 | Ya
Ayy4

X3 | Y3 Ay,
Ay Ay

Xo | Yo Ay 5 Ay,
Ay, Ay s Ay

X1 | Y- Ay, Ay, A%
Ay, Ay, LAY

Xo | ¥of APy MA'y 52 fA%y

MYay 4 WAy A Ter’y A

X1 | Y1 A%y Aly A%,
Ay, Ay Ay,

X2 | y2 Ay, Ay
Ay,

X3 | Y3 A%y,
Ays

X4 | Ya

where Gy, G, ...., G, are coefficients to be determined. From the Newton’s forward interpolation formula
[Eq.(5.48)], we have
Yp =E"yo =1+ 8)"yo = yo +uly, + ’4(”2' k A%y, + e ljf” 2 Ayg 4o (5.50)

Now A%y | = A2E1ly; = A2(1 + Ay lyg = A2(1 = A + A2 — A3 + --2) yg = A2yy — Ay + A%yg — Adyg + -+
Ady_y = Ndyg — Atyg + Adyg — Abyg + -+
Ay, = AE2y= A1 — Ay 2yp = A%(1 — 2A + 3A% — 473 + -+-) y,
= A%y — 2A5y) + 3A%—4ATy, + ...
and so on.

Hence Eq. (5.49) becomes
Vo = Yo + G1Ayg + Go(A2%y) — Adyg + Atyg — Adyg + ) + G3(A3yg — Aty + Adyg — Ay + --+)

+ G4(A4y0 — 2A5y0 + 3A6y0 — 4A7y0) + .- (551)
Comparing Egs. (5.50) and (5.51), we have
Gl =u
G, = u(u—1)

21



162 // Numerical Methods //

G, = (wu+Du(u-1)

3!
+1 -Dm-2
G, = )(")(Z' =2 e (552)
Hence, the Gauss’s forward interpolation formula can be written as
u(u—1) (u+Du(u-1) (u+Du(u—-)(u-2)
Yy = Yo +ulyy+ A%y, + Ay, + Atyg+-
2! 3! 4!

(5.53)

This formula given by Eq.(5.53) can be used to interpolate the values of y for # (0 < u < 1) measured forwardly
from the origin.

Equation (5.53) can also be written as

y= @)=y uye + D @7y w4ty )+ D @Aty
G 1)(“4_! DW=3) 74y ATy e (5.54)
or yo= £00 = o +utyy + XD a2y $ LD g3y
N (u+Du(u—-1)(u—-2) A4y,2 o (5.55)

41

Equation (5.55) is known as the Gauss’s forward interpolation formula. The Gauss’s forward interpolation
formula employs odd differences above the central line through y, and even differences on the central line.
Gauss’s forward formula is used to interpolate the values of the function for the value of u such that
O<u<l

5.5.2 Gauss’s Backward Interpolation Formula

The Gauss’s backward interpolation formula uses the differences which lie on the upper dashed line in
Table 5.8 and can be assumed of the form

Yy = Y0 +G/AY | +GA%y |+ GiA y , + GiAy , + - (5.56)

where G/,G;,Gj,....,G, are coefficients to be determined.

Now following the procedure described in Sec.5.5.1 and comparing with the Newton’s backward interpolation
formula, we find

G =u
_u(u+l)
Y

G = (u+2)(u ;l)(u —-Du

G,
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_ (u+ D) (u-Du-2)

G, a0 etc.
_ _ u 2 uw-=1,, , 3
Hence y=fx=y, +F(A)’71 +A%y )+ Y Ay + A7y )+ (5.57)
1 1 -1 2 1 -1
or ¥, = Yo +%Ay,1 + “("; ) g2y, Wt Dut—l) );"(” YNNI ChiC Z‘ =) pay 4

(5.58)
Equation (5.58) is called the Gauss’s backward interpolation formula. Gauss’s backward interpolation formula
employs odd differences below the central line through y, and even differences on the central line as shown
in Table 5.8. Gauss’s backward interpolation formula is used to interpolate line value of the function for a
negative value of u which lies between —1 and 0 (-1 < u < 0).

Example E5.37

Use Gauss’s forward interpolation formula to find y for x = 20 given that

x| 11 15 19 23 27
y | 19.5673 | 18.8243 | 18.2173 | 17.1236 | 16.6162

Solution:

The difference table constructed is shown below:

x|y Ay Ay Ay A'y

11 | 19.5673
-0.743

15 | 18.8243 0.1360
- 0.607 - 0.6227

19 | 18.2173 —0.4867 1.69570
—1.0937 1.0730

23 | 17.1236 0.5863
—0.5074

27 | 16.6162

x—x, 20-19
Here h=4, u Y 2 0.25

The Gauss’s forward interpolation formula is

u(u—1) (u+Du(u-1 (u+D(u)(u—1)(u—-2)
Y= Yo +ulyy+ Ay + Ay + Aty
2! 3! 41
=18.21730+0.25(-1.09370) + %(—0.48670) + ©.25+ 1)(0'625)(0.25 —D (1.07300)

, (0254 1)(0.25)(0.25 - 1)(0.25-2)
24

(1.69570)
Yoo = 17.97657
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Example E5.38

Use Gauss’s backward interpolation formula to find the sales for the year 1986 from the following data:

Year 1951 | 1961 | 1971 | 1981 | 1991 | 2001

Sales (in thousands) 13 17 22 28 41 53

Solution:
Here h =10, x = 1986 and xy = 1991.
R St 19861991 ~_05
h 10
X |y | Ay A2y A3y A4y Asy
4113
4
=31 17 1
5 0
2122 1 6
6 6 =20
-1]28 7 -14
13 -8
0|41 -1
12
1|53

Gauss’s backward interpolation formula is

u(u+1) Azy

y=yotuly_ + X -1 3 ) a1

or  y=41+(=0.5)(13)+ W(—lm L 505+ 1)(_2'5)(_0'5 =D g

(=0.5-1)(-0.5)(-0.5+1)(-0.5+2)

(~14) = 33.79688
24

5.5.3 Bessel’s Formula

N u+D@)(m-1) A3y N u-D)(u+1)(u+2) A

ot

Bessel’s formula uses the differences as shown in Table 5.10 in which brackets mean that the average has to

be taken.
Table 5.10

X1 Ya

2 4 6
xo (Y ATy, Ay, Ay,
o B ) Ay, |, Ay, | .
XAy Ay, Ay, Ay,
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Hence, the Bessel’s formula assumes the form

Yot )
p

1 A%y +A? Aty +A*
= +(A1 +§j Ay, + A, {%}Aﬁyl +A, {M

Ay +A?
Yy, = T"‘AlAY() + A Ay, {%}‘%A%’l + A{

2

2

The Newton’s forward difference interpolation formula is given by

Yp = Yo T ulyy+ X 0 3

u(u—1) Azy +u(u—1)(u—2) A3y0+14(14—1)(14—2)(14—3) A4

41

Now, comparing Egs.(5.59) and (5.60) and after simplifying the differences, we get

(Al +l) =u
2

_u(u—1)
Y
u(u—l)(u—;j
TR
DD =2)

Hence, the Bessel’s formula (5.59) becomes

yp = y0+l/lAy0+

21 2

L D@ =Dw=2)| Aty + A%y,
4 2

u(u—l)(u—l)
u(u—l){A2y1+A2y0}_ 2)

}

3
31 Y1

Using the central differences notation, Eq.(5.62) can be written as

where

u(u—1)
U8y, +

¥y = Yo +udyy s + X 3

1
MSZ)’l/z = E[Az)’—l + AZ)’O]

1
H64)’1/2 = E[Azlyfz + A4)’71] , etc.

(u —;j u(u—1)
—53y

172

+ (u+ 1)u(u4—' D(u-2) M54y

Aty +A*
M}r

5.59)

Yo+ (5.60)

12 T

(5.61)

(5.62)

(5.63)

(5.64)
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Example E5.39

Apply Bessel’s interpolation formula to obtain y,s, given that y,; = 2860, y,4 = 3167, y,g = 3555 and
Y = 4112.

Solution:

The difference table is shown below:

X | yx | Ay | Ay | Ay
X1 | 20 | 2860
307
xo | 24 | 3167 81
388 88
x; | 28| 3555 169
557
x, | 32| 4112
- 25-24
Here xo=24, h=4and u=——0= =025
h 4
The Bessel’s formula is
=1 A%y +A%y, | uu-Dw-0.5)
¥= Yo +ulyo +—— { 12 % |+ . Ay,

=3167+0.25(388) + (88) = 3252.96875

0.25(0.25-1) [81 + 169}+ 0.25(0.25 —1)(0.25 - 0.5)
2 6

5.5.4 Stirling’s Formula

Consider the mean of the Gauss’s forward and backward interpolation formula given by Eqs.(5.54) and (5.57),
we get

y :y0+u[Ay_1+Ayo}+£A2y +”(”2_1){A3y1+A3y2}
p

2 =t 31 2

2,2 2 2
u (u -1 4 u” =D —Hr . s 5
TR R R (A%, +a%y, ] (5.65)

Equation (5.65) is known as the Stirling’s formula. In the central differences notation, Stirling’s formula given
by Eq. (5.65) becomes

-2

~ 5 u? 52 u@?® -1 5 u® (u? —12)84
Yp = Yo Huldyy = 8%y | = M8 yg 8y 4o (5.66)
1 1
where udy, = E[A)’o +Ay_, ]: 5[5)’1/2 + 8)’—1/2]

1 1
and ud’yy = E[A3 Yo+ AsyfzJ = 5[63 Vit 63y—1/2:| (5.67)
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Stirling formula gives the most accurate result for —0.25 < u < 0.25. Hence, x; should be selected such that
u satisfies this inequality.

Example E5.40

Use Stirling’s interpolation formula to find y,g, given that y,y = 48234, y,5 = 47354, y3o = 46267, y35 = 44978
and y49 = 43389.

Solution:
. 28-30 . .
Here x = 30 as origin and & = 5. Therefore u = = —0.4. The difference table is shown below:
-30
x |u=2 . Yu Ay, | Ay, | Ay, | Aty
20 -2 48234
—880
25 -1 47354 -207
—1087 5
30 0 46267 —202 -103
—1289 —98
35 1 44978 =300
—1589
40 2 43389

The Stirling’s interpolation formula is

A%y, +A? ZA? 2o Aty +A° 2w -1
Va = yo tu| =RT2 2 B 0 pU D Ay Ay | )A4y_2 +o
2 2 6 2 24
-1087 -12 -0.4) -0.4)(-0.4> -[ 5-
= 46267+ (-0.4) 08 89 + (04) (202) + (040 )| 598
2 2 6 2
+( 04y (04" -1 (-103) = 46724.0128
24
5.5.5 Laplace-Everett’s Formula
Eliminating odd differences in Gauss’s forward formula [Eq.(5.54)] by using the relation
Ayo =y1— Yo
We have Ay | = A%y — Axy
Ay, =Ny - Ay, ...,
u u(u—1) (u+Du(u-1
Hence y=1®)y, +F(Y1_)’o)+ 2 A’y + 3 (Ayo —A%y)

+ (u+Du(u—-1)(u-2) A4y N (u+2)(u+Du(u—-1)(u-2)

4 — 4 cen
21 -2 5 A%y —A"y )+
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Yo

1 3 u+1 A2 71+(u+1)u(u—1)A2
Ix2 1x2x3 3!

={-u)y, +uy +u(u—1)[

1 u+2 |, , (u+2)u+Duu—-1)wu-2) 4
+(u+1)u(u—1)(u—2)[1x2x3x4— 5 }A Yot T Ay +-
-Du-2 1 -1
e MDD D
B (u+Du(u —lgsu -2)(u-3) A4y,2 + (u+2)(u +1);4'(u -Du—-2) A4y,1 e (5.68)

Writing v =1 — u, i.e., u = 1 — v and changing the terms (5.68) with a negative sign, we get

u w+Dv(v-1) (u+Du(u-1) W+2)v+DHv(v-DH(v-2)
y=vyg+— gy A APy Ay + Ay,
1! 3! 3! 5!
2 1 -Du-2
+(M+ Yt );(u S )A4)’71+“‘ (5.69)
Equation (5.69) can be written as
2 2 2 12v02 A2
v(v® -1 vv' —=17)(u" -2
V4 =f(x)=vy0+¥A2y,l+ ( 5)(' )A4y,2+---+uyl
2 2 2 12v2 A2
ALICHL P et 3 Chit DN (5.70)

3! 5!
Equation (5.70) is known as Laplace-Everett’s formula. Equation (5.71) uses only even differences of the
function.

Example E5.41

Use Everett’s interpolation formula to find the value of y when x = 1.60 from the following table.

X 1.0 1.25 1.50 1.75 2.0 2.25
y=1f(x) | 1.0543 | 1.1281 | 1.2247 | 1.3219 | 1.4243 | 1.4987

Solution:

The difference table is shown below:

i X Yi Ay; A%y Ay Aly;
-2 1 1.00 | 1.0543
0.0738
-1 1]1.25| 1.1281 0.0228
0.0966 -0.0222
0| 1.50 | 1.2247 0.006 0.0268
0.0972 0.0046
111751 1.3219 0.00520 -0.0378
0.1024 -0.0332
2 | 2.0 | 14243 -0.0280
0.0744
3 | 2.25 | 1.4987
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Here xo= 150 and 2 = 0.25
- 1.60-1.
Therefore py=2"% _ 60-1.50 _ 0.4
h 0.25
and u=1-v=1-04=0.6

The Everett’s interpolation formula is

2 2 2 2 2 2
(v —-17) vy —=17)(v" —-27)
y={vy1+—A2yo+ A4y1}
3! 51
2 2 2 _12v2 A2
{WMMWW P 2>A4y2}
3! 51
= 0401 3219)+ 221D gg500)  2AOLO=DOIO=D 390
6 120
{0.6(1.2247) +%(0.0006) ;060036 I;Z)(OS 6=9 (0.02680)} =1.26316

5.5.6 Selection of an Interpolation Formula
In general, the selection of an interpolation formula depends to a great extent on the position of the interpolated
value in the given data.
(a) Use Newton’s forward interpolation formula to find a tabulated value near the beginning of the
table.
(b) Use Newton’s backward interpolation formula to find a value near the end of the table.
(¢) Use either Stirling or Bessel’s or Laplace-Everett’s formula to find an interpolated value near the
centre of the table.
The coefficients in the central difference formulae are smaller and converge faster than those in Newton’s
forward or Newton’s backward interpolation formulae. Also, after a few terms, the coefficients in the Stirling’s
formula decrease more rapidly than those of the Bessel’s formula. Similarly, the coefficients of Bessel’s formula
decrease more rapidly than those of Newton’s forward or backward formula. Hence, wherever possible, central
difference formula are preferred than the Newton’s formulae. However, as described in (a), (b) and (c) above,
the right selection of an interpolation formula greatly depends on the position of the interpolated value in
the given tabular data set.

5.6 DIVIDED DIFFERENCES

Let the function y = f(x) be given at the point xg, x1, x,, ..., X, (Which need not be equally spaced) f(xy), f(x1),
fCx), ..., f(x,), denote the (n + 1) values the function at the points xy, xy, X5, ..., X,.

Then the first divided differences of f(x) for the arguments x, x; is defined as

fx)— f(x)

Xo =X
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It is denoted by f(x(, x1) or by [xg, x1]
fx)—f(x)

Likewise f(xy, xp) =
X~ X
PORNILCALY (I
Xy = X3

The second divided difference for the arguments x, x;, x, is defined as

S (g, x) = f(x,%)

Xo — X

Sfxo, x1, X)) =

similarly the third differences for the arguments xy, x;, x,, x3 is defined as

f(x()’xl’XZ)_f(xly'XZ’XS)
X0 ~ X3

S (o, x1, X2, X3) =

The first divided differences are called the divided differences of order one, the second divided differences
are called the divided differences of order two and so on.

The divided difference table (Table 5.11) is given below:

Table 5.11
Argument, X Entry Vi(x) V(%) Vf(x)

Xo f(x0)

1(xo, X1)
X1 f(xy) (X9, X1, Xp)

f(x1, X2) (X9, X1, X, X3)
X2 f(x2) f(x1, X, X3)

f(x2, X3)
X3 f(x3)

Example E5.42

1
If f(x) =; , then find the divided differences f (a, b) and f (a, b, ¢)

Solution:
Given fx) =l,
X
1.1
. fap<= @O _aTp _ bma _ 1
-b (a=b) ab(a-Db) ab
‘k(‘lj
ond Fla b o) = fla.b)=fb,e) _ab \ be :l(—c+aj .
a—c a—c b ac a—c abc

1
Hence f@,b,c) = —
abc
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Example E5.43
Prepare the divided difference table for the following data
Table E5.43
X 1 3 4 6 10
f(x) 0 18 58 190 920

Solution:
Table E5.43(a) shows the divided differences.

Table E5.43(a)

x | f(x) | V(x) V3f(x) V3f(x) V*Hi(x)
1 0| 9 10.33333 | —0.33333 | 0.207672
30 18| 40 8.666667 | 1.535714

41 58| 66 19.41667

6| 190 | 182.5

10 | 920

5.6.1 Newton’s Divided Difference Interpolation Formula
A function f(x) is written in terms of divided differences as follows:

S0 =f(xo) + (x = x0) f(xp, X1) + (X = xp), (x = x1) fXg, X1, X2) + (X = X) (x = x1) (X = x2) f(x0, X1, X2, X3)
+ (x = xp) (x = x1) (x = x2) (x = x3) f(x0, X1, X2, X3, Xg) + =
Example E5.44

Find the form of the function f(x) under suitable assumption from the following data.

X 0 1 2 5
fx) | 2 | 3 | 12 | 147

Solution:
The divided difference table (Table ES.44) is given as under:

Table E5.44
X f(x) Vi | V3 v3f
0 2

1
1 3 4

9 1
2 12 9

45
5 147

We have xy = 0, f (xg) = 2, f (xg, X1) = 1, f (x0, X1, %) = 4, f (x0, X1, X2, X3) = 1.
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The Newton’s divided difference interpolation formula for this case is:
J) =f(xo) + (x = x0) f (x0, x1) + (x = X0)(x — x1) f(x0, X1, X2) + (X = Xg) (x —x1) (x — X2) f(Xo, X1, X2, X3).

Substituting all constants we get:
fO=2+1x-0)+4x-0x-D+1x-0)x-Dx-2)

Hence f(x)=x3+x2—x+2.

Example E5.45

Derive the equation of the interpolating polynomial for the data given in Table 5.45 below:
Table E5.45

x(deg) fx)

0 3
1 2
2 7
3 24
4 59
5 118

Solution:

First form the divided difference table as shown in Table E5.45(a):
Table E5.45(a)

f(x) i v2f V3t V4t
0 3 -1 3 1 0
1 2 5 6 1 0
2 7 17 9 1
3 24 35 12
4 59 59
5 118

Using Newton’s divided difference formula, the interpolating polynomial is:
F ) =Ffxo) + (x = x0) f (%0, x1) + (x = X0)(x — x1) f (X0, X1, X2) + (x —xp) (x — x1) (x —x2) f (xo, X1, X2, X3)
=3-x+3x(x-D+x(x-Dx-2)
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Figure E5.45 shows the variation of the function with actual values and those obtained from polynomial.

Newton Interpolating Polynomial
120 T T T T T T T T T

O data points
| — Newton Polynomial

100

80

y 60

40

20

Fig. E5.45: Newton’s polynomial

Main advantage of divided difference table approach is that it has less computational operations. We do not
need to write the polynomial and then use the C? condition to calculate the constants. Secondly, it is much
easier to incorporate in a computer code. It is important to realise that both the Lagrange and Newton
polynomials are CO continuous and each would generate the same result.

5.7 CUBIC SPLINE INTERPOLATION

Generally, we use only one polynomial to describe the data over the entire range. Here, we will use different
continuous polynomials to describe the function in each interval of known points. This type of approximation
is called the piecewise polynomial approximation. Therefore, for n + 1 set of data, there will be n piecewise
polynomials formed. Splines of different degree are available in the literature. However, cubic splines are
most widely used.

Cubic spline interpolation method interpolates a function between a given set of data points by means
of piecewise smooth polynomials. Here, the curve passes through the given set of data points. The slope
and its curvature are continuous at each point. The advantage of cubic spline interpolation method is that
these polynomials are of a lower degree and less oscillatory, therefore describing the given data more
accurately. Cubic spline interpolation method is very powerful and widely used. It has several applications
in numerical differentiation, integration, solution of boundary value problems, plotting two-and three-
dimensional graph.

With a cubic spline, an expression for the second derivative can be obtained which will describe the
behaviour of the data most accurately within each interval.
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y
"—_‘g"\»\‘ /fi,i+1(x)
»\"\'
Yo Yi Yis2 Yn-2 y
Y1 Yi Yi+ Yn-s Yoaa| 7"
o X1 X2 Xi1 X Xis1 Xn3 Xn2 Xn1 Xp X

Fig. 5.2: Cubic spline

The second derivatives of the spline is zero at the end points. Since these end conditions occur naturally in
a beam model (in strength of materials), the resulting curve is known as the natural cubic spline. The pins,
i.e., the data points, are called the knots of the spline in a beam model.

Figure 5.2 shows a cubic spline that spans n knots. Let us denote f; ;,1(x) be the cubic polynomial that
spans the segment between knots i and i + 1. In Fig. 5.2, we note that the spline is a piecewise cubic curve,

assembled together form the n — 1 cubics f 2(x), f2.3 (%), ...., fu_1,» (¢), all of which have different coefficients.
Denoting the second derivative of the spline at knot i by k;, the continuity of second derivatives requires
that
JiZi ) = il () =k 671
In Eq.(5.71), k; is unknown, except for
ky=k,=0 5.72)

We know that the expression for f,7,,(x)is linear and the starting point for obtaining the coefficients of
Frin@)is f7,,(0).

Hence, we can write using Lagrange’s two-point interpolation,

S () = kil () + kg €4 () (5.73)
where li(x) = il B
X~ Xin
X—x
and lin(x) = —— (5.74)
Xiv1 — X
ki (x—x: —k. —X:
Hence f;/l/+1 (x)= i (x xlfl) i+1 (x Xi ) (5.75)

X~ X
Integrating Eq. (5.75) twice with respect to x, we get

ki (x — x4 )3 ki (x—x; )3

0(x; — X;41)

[ = +A(x = x4) — B(x—x;) (5.76)
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k(x—x. ) —x (x=—x)°
— z(x xz+l) xz+l(x xt) +Cx+D (5-77)

or
0(x; = x;41)

where A and B are constants of integration, C = A — B and D = —Ax; ,| + Bx;.

Now applying the condition f; ; +1(x;) = y;, Eq. (5.76) becomes

ki (x; = xi+1)3
4=t 7 1+ A(x; —x: = V.
6(x, —x,_,) (X =Xi) = Y (5.78)
Yi k;
Hence A= —— (X — X;41) (5.79)
X=Xy 6

Similarly, applying the condition f; ; ,1(X; +1) = Y; +1, gives

i ki
A——H(xi —Xiy) (5.80)

Xi = Xy 6

B:

From Eqgs. (5.79) and (5.80), we obtain

ki (x= i)’

6 Xi ~ Xiq

1

3
= (x=24)(x = xi+l):| _E{M = (= x)(% = Xiyp)

6 | X — X

Jiin ()=

" Vi (X = X)) = Yin (X — %)
Xi ~ Xyl

(5.81)

We note here that the second derivatives k; of the spline at the interior knots are found from the slope
continuity conditions

f}l—l(xi) = f;‘,/l‘+l(xi) i= 19 29 39 ceey B— 1 (5.82)

Applying the conditions given by Eq.(5.82) in Eq. (5.81) and after some mathematical manipulations or
simplifications, we obtain the simultaneous equations:

kis1(eo1 = x) + 2ki(_1 — X)) + K1 (6 — Xii1)

:{%1_%_%_%H

X;_ X; = Xip

— } i=2,3 .on—1 (5.83)
1 i

If the data points are equally spaced at intervals 4, then, we have
h=X_1 =X =X — X4 (5.84)
and Eq.(5.83) becomes

6
h4+4&+kH1227DT1_2%+yHJ i=2,3, ... n—1 (5.85)
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There are two boundary conditions normally used. They are

1. Natural boundary condition

The second derivatives of the data at the end points xy and x, are arbitrarily assumed to be zero. This
condition is known as the free or natural boundary condition. The polynomials resulting from this condition
are referred to as natural or free cubic splines. They may not provide very accurate values close to the

boundaries, but they are accurate enough in the interior region.

2. Clamped boundary condition

When the first derivative of the data are known at the end point x; and x,, the corresponding boundary

conditions are known. This condition is known as the clamped boundary condition.

Example E5.46

Given the data points:

x| 1| 2| 3
y | 131512913

N
(93

Find the natural cubic spline interpolation at x = 3.4.
Solution:

For equally spaced knots, the equations for the curvatures are written as

6
kioy 4k + kiyy = h_z()’H =2yt yi)  i=2,3,4
Here we have k| = ks and h = 1.

Hence 4k, + k3 = 6[13 —2(15) + 12] =-30
ky + 4ky + ky = 6[15-2(12)+9] =0
ks + 4k, = 6[12-2(9) + 13] =42
Solving Eq.(E.1), we obtain
ky, = —7.286, k3 =—0.857, ky=10.714
The interpolant between knots 2 and 3 is given by

ks {(x—x4)3

k 3
JCM()C):F A{M

6 X3_.X4

—(x—x4)(x3—x4)}— —(x—x3)(x3—x4)}

X3_.X4

n V3(Xx—=xy) = yu (x — x3)
X3_.X4

Hence, the natural cubic spline interpolation at x = 3.4 is

—-0.857| (3.4-4)°
f343.4) = {( )

ot ava | 107141 3.4-3)°
- T 34-40 4)} {

6 3-4

ED

-(34-3)(3- 4)}
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L 1264=H=9C473) _ ) 154848 -0.599984 +10.8 = 10.2552

3-4
Example E5.47
Find the natural spline that passes through the points given below:
i |1]2]3
Xj 01

Find the first and second derivatives at x = 1 noting that the interpolant consists of two cubics, one valid in
0<x<1,theotherin1 <x<2.

Solution:

For natural spline, we have k; = k3 = 0. The equation for k; is given by

6
ki + 4k, + ks :h—z()’l =2y, +y3)

Hence 0+4ky +0= 1%[0—2(2)“]

or ky=-4.5
The interpolant in 0 < x < 1 is given by

3
flz(x):_k_2|:m—(x—xl)(xl_Xz):|+yl(x_xz)_yZ(x_xl)
| ol n-x AT X
3
- 4_55( (xO—_()l) —(xr=0)(0- l>j + w =0.75x> +2.75x

The interpolant in 1 < x < 2 is given by

)3 3 _ ~
fat0= _k_z{m_(x_xﬁ(n - )63)}+ Y2 (X=x3) — y3(x— %)
6l n-n X =X
3
B ‘ﬂ(—(x —2 (-2~ 2)J #2072 0D 6 950-2) 17504 4.5
6| 1-2 )
Now f(x) = =3(0.75)x" +2.75 = —2.25x” +2.75

£53(x)=3(0.75)(x— 2)* —1.75 = 2.25(x - 2)* ~1.75
flo()=-2.25(1)* +2.75=0.5
f3(1)=2.25(1-2)> -1.75=0.5
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f5()=-22502)=—4.5
fos(1)=22512)(1-2)=—-4.5

Hence M= fi3(1)=0.5
and fllé = .f2/:3 (1)=-45
Example E5.48

Use the end conditions with a cubic spline that has constant second derivatives within its first and last
segments (noting the end segments are parabolic). The end conditions for this spline are given as k; = k,
and k,_; = k,. The data points are given below:

._.
)
w
~

i
X
y|1][1]05]0

(e}
[
[\®]
(O8]

Solution:

With evenly spaced knots, the equations for the curvatures are given by
6 .
ki +4k; + ki = h_z(yi—l =2+ Yir)s i=23 ED

With k; = ky, k4 = k3 and h = 1, Eq.(E.1) becomes
Sky + k3 = 6(1 —2(1) +0.5)=-3 (E2)
ky + S5ky = 6[1 -2(0.5)+0]=0

Solving Eq. (E.2), we get k, = —5/8, k3 = 1/8. The interpolant can now be evaluated from
kisi { (x—x )

3
ki| (r=xii1)
6| X=Xy

fi,i+1 (x)=

= (x=x)(x% = X;41)

—(x—x,)(x; — x5+1)} - 6

Xi = Xit]

n Yi(x =X ) = Yin (X — %)
Xi ~ Xyl

E3)

Substituting x; — x; .1 = —1 and i = 3, Eq. (E.3) becomes

k k
fa0) = g[—(x—m* +(x—x4)]—?“[—(x—x3>3 +(x—x3) = y3(x—x) + vy (x— x3)

Hence, f34(2.6)= %[—(2.6 -3’ +(2.6-3)]- %[—(2.6 -2’ +(2.6-2)]-0.5(2.6-3)+ 0= 0.1853

5.8 SUMMARY

Interpolation is the method of computing the value of the function y = f(x) for any given value of the
independent variable x when a set of values of y = f(x) for certain values of x are given. The study of
interpolation is based on the assumption that there are no sudden jump in the values of the dependent
variable for the period under consideration. In this chapter, the study of interpolation was presented based
on the calculus of finite differences. Some important interpolation formulae by means of forward, backward
and central differences of a function, which are frequently used in scientific and engineering calculations
were also presented.
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Problems
5.1 Show that

AV=A-V

5.2

5.3

(@)
()
(©)

(d)

(e)

)
(8
(h)
O]

0)

V = AE™!

Er=(1+A)

(AZJ
e = —|e
E
_a)" . a+m
A"sin (ax + b) = (ZSlnE) sm{ax+b+n(

A2 = (1 + A2

X

A3y, = V3ys
8= A(l +A) 12
V=1-(4+V)!

AV
\Y

Find the following:

(@)
()
©

(d)

(e

2]

@

(h)
@

Aeax
A sin x

A tan~'x

% 5x+12

2 +5x+6

()

A%
(?] X" (with interval of differencing = 1)

A
(1+x°%)

A sin (ax + b)

A2(3eY)

Ee*

AZe”

———=A+V
A

)

(h = interval of differencing)

H (interval of differencing = 1)

Construct a forward difference table for the following data:

(@)

X

45

55

65

75

y =1(x)

20

60

120

180
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b) X 40 | 50 | 60 | 70 | 80 | 90
y=1(x) | 204 | 224 | 246 | 270 | 296 | 324

5.4 Construct a difference table fory=x* + 2x + 3forx =1, 2, 3, 4, 5.
5.5 Givenug=1,u; =5, uy = 10, u3 = 30, u, = 30, find A*u,.
5.6 Given uy=5, u; =24, u, = 81, uz = 200, u, = 100 and us = 8, find Adu,.

5.7 Estimate the missing term in the following tables:

(a) X 123475
y=f(x) | 5| 14 |2 ] 74137

(b) X 123 4] 5
y=1f(x) | 8 | 17 | 38 | 7 | 140

© x |0|1]2]3
y=fx) | 32|32 ]11

5.8 If mis a positive integer and the interval of differencing is 1, show that " = x(x — 1) --- [x — (x = 1)].
5.9 Express the following in the factorial notation. Take interval of differencing as equal to 1.

@ y=f@=33+x2+x+1

b)) y=fx)=x*-5+3x+4
5.10 Find the missing entry in the following tables:

(@) X o123 |4
y=f(x)|1|3]13|—]81
) X 112 (3] 4
y=1f(x) | 1 — | 28 | 69
(©) X O] 1]2]3]|4
y=fx)|1|-2]|-1|—|37
) X O|1|2 |3 |4
y=f(x)|1|4]|—|28]61
) X 0| 1]2]3]4
y=f(x) | 6 |-3|4|— |54

5.11 Find the missing entry in the following tables:

(a) X 0|12 ]3| 4
y=f(x) | 1|3 | —|55]| 189

b) X Of1]2]3 4
y=fx) |1|-3|-1|—| 165

(c) X 0 1 2 13| 4

y=f(x) | 31| 35| — |5 133
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) X 0 1 1213 4
y=f(x) | 23|27 — | 13| 141

(e) X 0} 11]2]3 4
y=f(x) |2 |-2|0]|—| 166

5.12 Interpolate the missing entries in the following tables:

(@) X 0] 112 ]3] 4
y=fx) |1 |— | 13| — |81

) X 0] 1121314
y=fx) |1 |2|—|— |37

(¢) X 0] 1121314
y=fx) |1 |— |11 ]| — |61

) X 0] 1]2]3 |4
y=fx) | 6| — |4 |— |54

(e) X 0] 11213 4
y=f(x) | 6| —|12]|— | 118

5.13 Given that /12600 = 112.24972, /12610 = 112.29426, /12620 = 112.33877, /12630 = 112.38327. Find
the value of /12616 .

5.14 Evaluate y = ¢ for x = 0.25 from the data in the following table.

x |02 0.3 04 0.5 0.6
e | 1.49182 | 1.82212 | 2.22554 | 2.71828 | 3.32012

5.15 The values of sin x are given below for different values of x. Find the value of sin 42°.

X 40° 45° 50° 55° 60°
y=sinx | 0.64279 | 0.70711 | 0.76604 | 0.81915 | 0.86603

5.16 In an examination the number of students who obtained marks between certain limits was as follows:

Marks 30-40 | 40-50 | 50-60 | 60-70 | 70-80
No. of students | 18 40 64 50 28

Find the number of students whose scores lie between 70 and 75.

5.17 From the following table estimate the number of students who obtained marks in the examination between
50 and 55.

Marks 35-45 | 45-55 | 55-65 | 65-75 | 75-85
No. of students 31 42 51 35 31

5.18 A second degree polynomial passes through the points (2, —1), (3, 1), (4, 5) and (5, 11). Find the
polynomial.
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5.19 A second degree polynomial passes through the points (1, 5), (2, 11), (3, 19) and (4, 29). Find the
polynomial.

5.20 Find a cubic polynomial which takes the following values.

x JO]1]2]3
fx) | 141746

5.21 Refer to Problem P5.11. Find f (1.5).
5.22 Refer to Problem P5.10. Find f (3.5).

5.23 The table below gives the values of f(x) for 0.10 < x < 0.30. Find f (0.12) and f(0.26).

x [0.1 0.15 0.2 0.25 0.30
f(x) | 0.0998 | 0.1494 | 0.1987 | 0.2474 | 0.2955

5.24 The population (in thousands) of a small town is given in the following table. Estimate the population
in the years 1965 and 1995.

Year, X 1961 | 1971 | 1981 | 1991 | 2001
Population y = f(x) | 46 66 81 93 101
(in thousands)

5.25 Using Newton’s forward interpolation formula find the value of sin 52° from the following data. Estimate
the error.

X 40° 45° 50° 55° 60°
y =sinx | 0.64279 | 0.70711 | 0.76604 | 0.81915 | 0.86603

5.26 Find the polynomial of degree three relevant to the following data using Lagrange’s interpolation formula.

X 1 2 3 5
f(x) | =12 | =14 | =20 | =20

5.27 Find the polynomial of the least degree which attains the prescribed values at the given point using
Lagrange’s interpolation formula.

X 1 2 4 5
y=1f(x) | 27 | 44 | -84 | 95

5.28 Find the polynomial of degree three relevant to the following data using Lagrange’s interpolation formula.

X 1] 3] 5] 6
y=f(x) | 71 | 115 | 295 | 466

5.29 Find the polynomial of degree three relevant to the following data using Lagrange’s interpolation formula.

x JOo|1] 2] 4
y=fx) | 2|5] 12] 62
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5.30 Using Lagrange’s interpolation formula, find the value of y corresponding to x = 8 from the following
table:

X 1 3 6 9
y=1f(x) | 71 | 115 | 466 | 1447

5.31 Using Lagrange’s interpolation formula, find the value of y corresponding to x = 6 from the following
table:

X 0] 3 5 7
y=f(x) | 229|117 | 317

5.32 Using Lagrange’s interpolation formula, find the value of y corresponding to x = 4 from the following
table:

X 0] 1] 3]5
y=f(x) | 20 | 12 | 20 | 20

5.33 Using Lagrange’s interpolation formula, find the value of y corresponding to x = 9 from the following
table:

X 5 6 | 11 13
y=1(x) | 380 | -2 | 508 | 1020

5.34 The following table gives the values of y corresponding to certain values of x. Find the value of x
when y = 420.61175 by applying Lagrange’s inverse interpolation formula.

X 1] 2 5 6
y=1(x) | 71 | 82 | 295 | 466

5.35 The following table gives the values of y corresponding to certain values of x. Find the value of x
when y = —76.0188 by applying Lagrange’s inverse interpolation formula.

X 1] 2] 475
y=f(x) | 27 | =65 | -84 | 95

5.36 The following table gives the values of y corresponding to certain values of x. Find the value of x
when y = 89.64656 by applying Lagrange’s inverse interpolation formula.

X 1 2 5 6
y=1(x) | 71 | 82 | 295 | 466

5.37 The following table gives the values of y corresponding to certain values of x. Find the value of x
when y = —16.875 by applying Lagrange’s inverse interpolation formula.

X 0] 1] 3] 5
y=1f(x) | 20 | -12 | 20 | 20

5.38 Apply Gauss’s forward interpolation formula to find the value of f(x) at x = 11 from the following table:

X 11519 13]17
f(x) | 13|16 | 18] 21 |26
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5.39 Find the value of f(x) at x = 10 by applying Gauss’s forward interpolation formula from the following
data:

x [ 0] 4|8 ]|12]16
f(x) |23 1283639 |45

5.40 Find the value of f (9) by applying Gauss’s forward interpolation formula from the following data:

x |0 4]8]12]16
f(x) | 15 | 25 | 34 | 37 | 42

5.41 Apply Gauss’s forward interpolation formula to find the value of f(12.2) from the following data:

X 10 11 12 13 14
fi(x) | 23967 | 28060 | 31788 | 35209 | 38368

5.42 Find the value of f (9) by applying Gauss’s forward interpolation formula from the following data:

x |04 8]12]16
fx) | 17 | 19 | 35 | 38 | 41

5.43 Use Gauss’s forward interpolation formula to find y for x = 10 given that

X o4 8 ]12]16
y=1f(x) | 15| 25|34 |37 |42

5.44 Use Gauss’s backward interpolation formula to find the sales for the year 1966 given the following
data:

Year 1931 | 1941 | 1951 | 1961 | 1971 | 1981
Sales (in millions) 5 7 12 17 23 31

5.45 Apply Gauss’s backward interpolation formula and find the population of a city in 1946 based on the
following data:

Year 1931 | 1941 | 1951 | 1961 | 1971
Population (in millions) | 16 21 29 41 54

5.46 Use Gauss’s backward interpolation formula to find the sales for the year 1966 based on the following
data:

Year 1951 | 1961 | 1971 | 1981 | 1991
Sales (in millions) 23 32 43 52 61

5.47 Apply Gauss’s backward interpolation formula to find the population of a city in 1986 based on the
following data:

Year 1951 | 1961 | 1971 | 1981 | 1991 | 2001
Population (in millions) | 15 21 25 29 47 61
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5.48 Use Gauss’s backward interpolation formula to find the sales for the year 1986 based on the following

data:
Year 1951 | 1961 | 1971 | 1981 | 1991 | 2001
Sales (in millions) 1 3 6 11 17 23
5.49 Apply Bessel’s interpolation formula to obtain y,s, given that y,q = 515, yo4 = 438, y,3 = 348 and
Y = 249.
5.50 Apply Bessel’s interpolation formula to obtain y;4, given that y;5 = 0.345, y,o = 0.375, y,5 = 0.478 and
Y30 = 0.653.
5.51 Apply Bessel’s interpolation formula to obtain y; ¢, given that y; 5 = 0.345, y, o = 0.423, y, 5 = 0.512 and
Yo = 0.756.

5.52 Apply Bessel’s interpolation formula to obtain ys, given that y,; = 19, y,3; =29, y4; = 43 and ys; = 54.

5.53 Apply Bessel’s interpolation formula to obtain y; 4, given that y; ,5 = 1.0772, y; 5 = 1.1447, y; 75 = 1.2051
and y, o = 1.2599.

5.54 Apply Bessel’s interpolation formula to obtain yg 44, given that ygeq = 1.89648, yges = 1.91554,
Yoo = 1.93479 and yy 67 = 1.95424.

5.55 Use Stirling’s interpolation formula to find y;,, from the following table:

X 10 11 12 13 14
y=1(x) | 24765 | 27876 | 30879 | 36543 | 39879

5.56 Use Stirling’s interpolation formula to find y; ,, from the following table:

X 0105 1.0 1.5 2.0
y=1f(x) | 0] 0.1910 | 0.3410 | 0.4330 | 0.4770

5.57 Use Stirling’s interpolation formula to find y,, ¢ from the following table:

X 20 21 22 23 24
y=1(x) | 1.2123 | 1.3546 | 1.4879 | 1.5765 | 1.6987

5.58 Use Stirling’s interpolation formula to find y; g from the following table of data:

X 1 2 3 4 5
y =f(x) | 0.12340 | 0.34560 | 0.87650 | 1.12346 | 1.34657

5.59 Use Stirling’s interpolation formula to find y; 5 from the following data:

X 2 2.5 3.0 3.5 4.0
y =f(x) | 49225 | 48316 | 47236 | 45926 | 44306

5.60 Use Everett’s interpolation formula to find the value of y when x = 3.5 from the following table:

X 1 2 3 4 5 6
y =1f(x) | 1.2567 | 1.4356 | 1.5678 | 1.6547 | 1.7658 | 1.8345
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5.61 Use Everett’s interpolation formula to find the value of y when x = 6 from the following table.

X 1 3 5 7 9 11
y=1(x) | -0.375 | -2.947 | -6.063 | —2.331 | 24.857 | 105.165

5.62 Use Everett’s interpolation formula to find the value of y when x = 0.35 from the following table.

X 0.1 0.2 0.3 04 0.5 0.6
y=1(x) | 1.23900 | 1.12999 | 0.95294 | 0.70785 | 0.39469 | 0.01348

5.63 Use Everett’s interpolation formula to find the value of y when x = 0.35 from the following table.

X 0.1 0.2 0.3 0.4 0.5 0.6
y=1(x) | 2.4780 | 2.25997 | 1.90589 | 1.41569 | 0.78938 | 0.02696

5.64 Use Everett’s interpolation formula to find the value of y when x = 0.644 from the following table.

X 0.61 0.62 0.63 0.64 0.65 0.66 0.67
y=f(x) | 1.850431 | 1.858928 | 1.887610 | 1.906481 | 1.925541 | 1.944792 | 1.964237

5.65 Use Everett’s interpolation formula to find the value of y when x = 1.71 from the following table.

X 1.4 1.5 1.6 1.7 1.8 1.9 2.0
y =1(x) | 4.055200 | 4.481689 | 4.953032 | 5.473947 | 6.049647 | 6.685894 | 7.389056

5.66 Fit a cubic spline curve that passes through the points as shown below:

x]0] 1 |2] 3
y|o[05]2]15

The natural end boundary conditions are: y"(0) = y"(3) = 0.
5.67 Apply natural cubic spline interpolation method to find y at x = 1.5. The data points are given below:

x| 12345
ylo[1[o[1]0

5.68 Develop a natural cubic spline for the following data:

x|3 4 5 6 7
y 37139139142 |57

Find f'(3.4), f'(5.2) and f'(5.6).
5.69 Find the zero of the function y(x) from the following data:

x| 1.0 0.8 0.6 0.4 0.2
y | -1.049 | -0.0266 | 0.377 | 0.855 | 1.15

Use inverse interpolation with the natural cubic spline.

5.70 Fit a cubic spline curve for the following data with end conditions y’ (0) = 0.2 and y' (3) = —1.

x|0] 1 | 2 |3
y|0/05[35]5




//  Finite Differences and Interpolation // 187

5.71 Construct a clamped cubic spline for the following data given that the slope of 0.2 at x; and a slope of
0.6 at x,,.

n| 0 1 2 3 4
3 4 5 6 7
y 1371391394257

o

Find f "(3.4), f ' (5.2) and f (5.6).
5.72 Fit the data in Table P5.72 with cubic spline and find the value at x = 5.
Table P5.72

i| 1 2 3 4
x| 3 [45] 7 9
y|[25]10]25]05

5.73 Determine the cubic spline interpolation at x = 2.6 based on the data points given below:

x]0[1] 2 [3
y|1]1]05]0

Given the end conditions as f;’,(0) = 0 (zero slope).

ONONO)
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CHAPTER

Curve Fitting, Regression
and Correlation

6.1 INTRODUCTION

In real life engineering practice, often a relationship is found to exist between two (or more) variables. For
example: the experimental data for force (N) and velocity (m/s) from a wind tunnel experiment. A mechanical
element/component is suspended in a wind tunnel and the force measured for various levels of wind velocity.
This relationship can be visualised by plotting force versus velocity. It is frequently desirable to express this
relationship in mathematical/analytical form by establishing an equation connecting the variables.

In order to determine an equation connecting the variables, it is often necessary to collect the data
depicting the values of the variables under consideration.

For example, if x and y denote respectively the velocity and force from the wind tunnel experiment, then
a sample of n individual would give the velocities xy, x,, ..., x,, and the corresponding forces yi, y, ..., Yy
When these points (x, y;), (X2, ¥2), ..., (X,, y,) are plotted on a rectangular coordinate system, the resulting
set of points on the plot is called the scatter diagram. From such a scatter diagram, one can visualise a
smooth curve approximating the given data points. Such a curve is known as an approximating curve.
Figure 6.1(a) shows that the data appears to be approximated by a straight line and it clearly exhibits a linear
relationship between the two variables. On the other hand Fig. 6.1(b) shows a relationship which is not
linear and in fact it is a non-linear relationship between the variables. Curve fitting is the general problem of
finding equations of approximating curves which best fit the given set of data.

y y

(a) Linear Relationship (b) Non-linear Relationship

Fig. 6.1: Linear and non-linear relationship
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Approximating Curves

Table 6.1 lists a few common approximating curves used in practice and their equations. The variables x and
y are called the independent and dependent variables respectively. The scatter diagrams of the variables or
transformed variables will help determine the curve to be used.

Table 6.1
No. Equation Description of the curve
1. |y=a+bx Straight line
2. [y=a+bx+cx’ Parabola or quadratic curve
3. |y=a+bx+cx’ +dx° Cubic curve
4, |y=a+bx+cx’ +dx’ +ex’ Quartic curve
5. | y=ag+ax + a4 o +ax" n" degree curve
1 1
6. = or —=c+mx Hyperbola
¢+ mx y
7. | y=ab"orlogy=1loga+ x(logb) =ay + bgx Exponential curve
8. | y=ax"orlogy =log a+ b(log x) Geometric curve (power function)
9. |y=ab"+c Modified exponential curve
10 |y=ax"+c¢ Modified geometric curve
11. | y=pq” or logy=logp +b*logq=ab*+q | Gompertz curve
12. | y= pq"x +h Modified Gompertz curve
1 1 x -
13. | y=— or —=ab"+q Logistic curve
ab” +q y
14. | y=be™ or y=b 10™ Exponential function
1
15. | y= Reciprocal function
mx +b
16. | y=« Saturation-growth-rate equation
B+x
In Table 6.1, a, b, ¢, d, e, ay, a;, ay, ..., a,, by, p, g, h, m, o and P are all constant coefficients.

Linear Regression

Linear regression and correlation are two commonly used methods for examining the relationship between
quantitative variables and for making predictions. In this chapter, we review linear equations with one
independent variable, explain how to find the regression equation, the equation of the line that best fits a
set of data points. We also examine the coefficient of determination that is a descriptive measure of the
utility of the regression equation for making predictions. In addition, we discuss the linear correlation
coefficient, which provides a descriptive measure of the strength of the linear relationship between the two
quantitative variables.

6.2 LINEAR EQUATION

The general form of a linear equation with one independent variable can be written as
y=a+bx
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where a and b are constants (fixed numbers), x is the independent variable, and y is the dependent variable.
The graph of a linear equation with one independent variable is a straight line, or simply a line. Also, any
non vertical line can be represented by such an equation.

Linear equations with one independent variable occur frequently in applications of mathematics to many
different fields, including the social sciences, engineering, and management as well as physical and
mathematical sciences.

For a linear equation y = a + bx, the number a is the y-value of the point of intersection of the line and
the y-axis. The number b measures the steepness of the line. b indicates how much the y-value changes
when the x-value increases by 1 unit. Figure 6.2(a) illustrates these relationships.

y h
y=a+ bx —

b units up

1 unit
increase

Fig. 6.2 (a): (Graph of y = a + bx)
The numbers a and b have special names that reflect these geometric interpretations. For a linear equation
y = a + bx, the number a is called the y-intercept and the number b is called the slope.

The graph of the linear equation y = a + bx slopes upward if b > 0, slopes downward if » < 0, and is
horizontal if b = 0, as shown in Fig. 6.2(b).

yk ylk yk
/ y =a + bx
y=a+bx y =a+ bx
0 . 0 . 0 .
b>0 b<0 b=0

Fig. 6.2(b): Graphical interpretation of slope

6.3 CURVE FITTING WITH A LINEAR EQUATION

Curve fitting is a procedure in which a mathematical formula (equation) is used to best fit a given set of data
points. The objective is to find a function that fits the data overall. Curve fitting is used when the values of
the data points have some error, or scatter and require a curve fit to the points. Curve fitting can be
accomplished with many types of functions and with polynomials of various orders.
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Curve fitting using a linear equation (first degree polynomial) is the process by which an equation of the
form

y =a+bx 6.1)
is used to best fit the given data points. This can be accomplished by finding the constants a and b that
give the smallest error when the data points are substituted in Eq. (6.1). If the data points consists of only
two points, the constants can be obtained such that Eq. (6.1) gives the exact values at the points. Figure 6.3
shows the straight line corresponding to the Eq. (6.1) and passing through the two points. When the data
has more than two points, the constants a and b are determined such that the line has the best fit overall as
shown in Fig. 6.4.

y4 y 4

0 » X 0 » X
Fig. 6.3: Straight line connecting Fig. 6.4: A straight line passing
two points through many data points

The procedure for obtaining the constants a and b that give the best fit requires a definition of best fit and
an analytical procedure for deriving the constants a and b. The fitting between the given data points and an
approximating linear function is obtained by first computing the error, also called the residual, which is the
difference between a data point and the value of the approximating function, at each point. Figure 6.5 shows
a linear function (straight line) that is used for curve fitting n points.

(Xn»Yn)

f(xa) '(Xa,Y3)

o

Fig. 6.5: Curve-fitting points with a linear equation y = a + bx

Thus, the residual, e is the discrepancy between the true value of y and the approximating value, a + bx,
predicted by the linear equation.
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6.4 CRITERIA FOR A “BEST” FIT

A criterion that measures how well the approximating function fits the given data can be determined by
computing a total error E in terms of the residuals as

n

E=Y e = Y[y —(a+bx)] 62)
i=1

i=1
where n = total number of points.
However, this is an inadequate criterion, as illustrated in Fig. 6.6, which shows that E is zero since

e; =—e4and e; = —e3.

Ya

v

O

Fig. 6.6: Straight line fit with E = 0

One way to remove the effect of the signs might be to minimise the sum of the absolute values of the
discrepancies:

Ezznlleilzznlly[—a—bxil 6.3)
i=1 i=1

Figure 6.7 shows why this criterion is also inadequate. For four points show, for the same set of points there
can be several functions that give the same total error. E is the same for the two approximating lines in
Fig. 6.7.

Ya

e) » X
Fig. 6.7: Two straight line fits with the same total error as per Eq. (6.3)
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A third strategy for fitting a best line is the minmax criterion. In this technique, the straight line is chosen
that minimises the maximum distance that an individual point falls from the line. Again as shown in Fig.6.8,
this technique gives undue influence to an outlier (a single point with a large error).

Ya

- @ outlier

» X

O
Fig. 6.8: Minimisation of the maximum error of any individual point

A method that overcomes the shortcomings of the aforementioned approaches is to minimise the sum of the
squares of the residuals:

n n
S, =Y e =Y (y,—a-bx,)’ 64)
i=1 i=1

Equation (6.4) always gives a positive number of S, (total error) and positive and negative residuals do not
cancel each other. This criterion (Eq.6.4) is called the least squares and has many advantages, including that
it gives a unique line for a given set of data.

Equation (6.4) can be used to determine the coefficients a and b in the linear function y = @ + bx that
yield the smallest total error. This is accomplished by using a procedure called linear least-squares regression,
which is presented in the next section.

6.5 LINEAR LEAST-SQUARES REGRESSION

Linear least-squares regression is a method in which the coefficients @ and b of a linear function y = a + bx
are determined such that the function has the best fit to a given set of data points. The best fit is defined as
the smallest possible total error that is computed by adding the squares of the residuals according to

Eq. (6.4).

For a given set of n data points (x;, y;), the overall error calculated by Eq. (6.4) is

S_:

¥

[y; — (a+bx)T 6.5)

M-

i=1

Since the values of x; and y; are known, S, in Eq. (6.5) is a non-linear function of two variables a and b. This
function S, has a minimum at the values of a and b where the partial derivatives of S, with respect to each
variable is equal to zero.

Taking the partial derivatives and setting then equal to zero gives

3s L
L=-2) (y;—a=bx)=0 66)
da part
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0S "
L=2Y[(y;—a—bx)x]=0 6.7)
db i=1

Equations (6.6) and (6.7) are a system to two linear equations for the two unknowns a and b, and can be
rewritten in the form

na+ X; }b =)y (6.8)
=1 i=1

i i=

{lel}a + lel-z}bzz}xiyi 6.9)

Equations (6.8) and (6.9) are called the normal equations and can be solved simultaneously for

b= 2
n n (6.10)
n xiz—{ xl}
. [5+]5]
inyi _ L=t i=1
or p= izl " . 6.11)
. |2]
2 Li=t
580 5]
and a=Lt=t =l S 6.12)
”2 x,-z —{2 x,}
i=1 i=1
or a=y—-bx

Since Egs. (6.10) to (6.12) contain summations that are the same for a set of n points, they can also be written
as,

SS., =2(x —X)* =27 —(2x,)* /n
S8y =2(x —X)(y; —y) = 2xy; — (Bx)(Zy;)  n

S8, =2(y;, =)’ =5y = (Zy,)’ /n
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The regression equation for a set of n data points is

y=a+bx
b S8,y
where = SS..
1 o
and a=;(2yl-—b2xi)=y—bx

6.6 LINEAR REGRESSION ANALYSIS

A regression model is a mathematical equation that describes the relationship between two or more variables.
A single regression model includes only two variables: one independent and one dependent. The relationship
between two variables in a regression analysis is expressed by a mathematical equation called a regression
equation or model. A regression equation that gives a straight-line relationship between two variables is
called a linear regression model; otherwise, it is called a non-linear regression model. Figures 6.9(a) and (b)
show a linear and a non-linear relationship between independent variable and the dependent variable.

»
»
»
»

Non-linear

Linear

Dependent variable
Dependent variable

\4
\4

o
(0]

Independent variable Independent variable

(a) (b)

Fig. 6.9: (a) Linear relationship, (b) Non-linear relationship

The equation of a linear relationship between two variables x and y is written as
y=a+bx (6.13)
where a gives the y-intercept and b represents the slope of the line.
In regression model, x is the independent variable and y is the dependent variable. The simple linear
regression model for population is written as
y =A+Bx (6.14)
Equation (6.14) is called a deterministic model. It gives an exact relationship between x and y. However, in
many instances the relationship between the variables is not exact. Therefore, the complete regression model
is then written as
YA + Bx+ € (6.15)
where € is called the random error term. This regression model (Eq. (6.5)) is called a probabilistic model

(or a statistical relationship). The random error term € is included in the model to take into consideration
of the following two phenomena:
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(a) Missing or omitted variables: The random error term € is included to capture the effect of all the

missing or omitted variables that were not included in the model.

(b) Random variation: The random error term € is included to capture the random variation.

In Eq. (6.15), A and B are the population parameters. The regression line obtained from Eq. (6.15) by using
the population data is called the population regression line. The values of A and B is the population
regression line is called the true values of the y-intercept and slope.

However, most often the population data is difficult to obtain. As a consequence, we almost always use
the sample data and use the model given by Eq. (6.15). The values of the y-intercept and slope calculated
from sample data on x and y are called the estimated values of A and B and are denoted by a and b.

The estimated regression model is then written as

y=a+bx (6.16)
where ¥ is the estimated or predicted value of y for a given value of x. Equation (6.16) is called the estimated
regression model. It gives the regression of y on x. A plot of paired observation is called a scatter diagram
as shown in Fig. 6.10.

Ya

o) » X
Fig. 6.10: Scatter diagram

To find the line that best fits the scatter of points, we minimise the error sum of squares, denoted by SSE,
which is given by

SSE=3e? =3(y—-9)* (6.17)

where e=y—y

The least squares method gives the values of a and b such that the sum of squared errors (SSE) is minimum.

For the least squares regression line y = a + bx from Egs. (6.10) to (6.17), we have

SS,,
b:F and a=y-bx (6.18)
where S8,y = Zxy _20)

n

) (20?

SS,, =3 -2

n

S8, =2(y=y) =3y —(Zy)’ /n (6.19)

The least squares regression line y = a + bx is also called the regression of y on x.
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6.6.1 MATLAB Functions: polyfit and polyval
MATLAB has a built-in function polyfit that fits a least-square nth-order polynomial to data. It can be
applied as in

>> p = polyfit (x, y, n)
where x and y are the vectors of the independent and the dependent variables, respectively, and n = the
order of the polynomial. The function returns a vector p containing the polynomial’s coefficients.

It should be noted here that it represents the polynomial using decreasing powers of x as in the following
representation:

FO) = pix" + pox™ !+ psx"2 + o 4 puX + Py

Since a straight line is a first-order polynomial, polyfit (x, y,1) will return the slope and the intercept of the

best-fit straight line.
Another function, polyval can be used to compute a value using the coefficients.

It has the general format:
>>y = polyval (p, x)

where p = the polynomial coefficients and y = the best-fit value at x.

Example E6.1
Table E6.1 gives experimental data for force (N) and velocity (m/s) for an object suspended in a wind tunnel.
Table E6.1
Velocity, v(m/s) | 10 | 20 | 30| 40| 50 60| 70 80
Force F(N) 24 | 68 | 378 | 552 | 608 | 1218 | 831 | 1452

(a) wuse the linear least-squares regression to determine the coefficients a and b in the function
y = a + bx that best fits the data
(b) estimate the force when the velocity is 55 m/s.

Solution:
Here n = 8.
n| x y e Xy
1 10 24 100 240
2 20 68 400 1360
3 30 | 378 900 11340
4| 40| 552 1600 | 22080
5 50 | 608 | 2500 | 30400
6 60 | 1218 | 3600 | 73080
7 70| 831 | 4900 | 58170
8 80 | 1452 | 6400 | 116160
> | 360 | 5131 | 20400 | 312830
7230045
n 8
y= & :%31: 641.375

n
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From Eq. (6.16), we have

S,

SS..
where 5, = Sy = ZVE) _ 31983 GOOOLD _ ¢35

n
Sy 2 2
and ss. =52~ 20400 (36% = 4200
n
SS.,
_ 20w _BI935 g 5053
SS. 4200

XX

From Eq. (6.17), we have
a=7y—bx =641.375-(19.5083)(45) = —236.50
Hence y=-236.50 + 19.5083x
(b) The estimated value of the force when the velocity is 55 m/s, is given by
¥ =a+ bx =-236.50 + 19.5083(55) = 836.4583(N).

MATLAB Solution:

(@ >> x=1[1020 30 40 50 60 70 801;
>>y [24 68 378 552 608 1218 831 1452];
>> a =polyfit (x, vy, 1)

a =
19.5083 -236.5000

Hence, the slope is 19.5083 and the intercept is —236.50.

(b) The MATLAB function, polyval can be used to compute a value using the coefficients. Therefore,

>>y =polyval (a, 55)
y =
836.4583

Hence, the estimated value of the force when the velocity is 55 m/s is 836.4583(N).

6.7 INTERPRETATION OF a AND b

When b is positive, an increment in x will lead to an increase in y and a decrease in x will lead to a decrease
in y. That is, when b is positive, the movements in x and y are in the same direction. Such a relationship
between x and y is called a positive linear relationship. The regression line slopes upward from left to

right.

Similarly, if the value of b is negative, an increase in x will cause a decrease in y and a decrease in x will
cause an increase in y. The changes in x and y are in opposite directions. Such a relationship between x and
y is called a negative linear relationship. The regression line slopes downward from left to right. Figure 6.11

shows these two relationships.
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0 » X O » X

(a) Positive linear relationship (b > 0) (b) Negative linear relationship (b < 0)
Fig. 6.11: Positive and negative relationship between x and y

Assumptions in the Regression Model
The linear regression analysis is based on the following assumptions:
1. The random error term € has a mean equal to zero for each x.
2. The errors associated with different observations are independent.
3. For any given x, the distribution of errors is normal.
4. The distribution of population errors for each x has the same (constant) standard deviation, which
is denoted by o, as shown in Fig.6.12 (a) and (b).

Normal distribution
with (constant)
/standard deviation cg

Population
regression line

(b)
Fig. 6.12: (a) Assumptions in the regression model, (b) Distribution on the regression line
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6.8 STANDARD DEVIATION OF RANDOM ERRORS

The standard deviation G, measures the spread of the errors around the regression line as shown in
Fig. 6.12 (b). The standard deviation of errors is calculated using

fSSE
s, =
n—-2

where SSE= X(y-3)°
[SS. —bSS..
or s, = -2 2 (6.20)
n-2
_ >y)?
where SS,, =Z(y-y)* ==y _&y)”
o n
0
SS,, = Zxy _E0Cy) 621)

In Eq. (6.20), (n — 2) represents the degrees of freedom for the regression model. The reason for df =n — 2

is that we lose one degree of freedom to calculate ¥ and one fory.

6.9 COEFFICIENT OF DETERMINATION

The coefficient of determination, denoted by r2, represents the proportion of the total sum of squares that
is explained by the use of the regression model. The computational formula for 2 is given by

5 S8y

P =b 0<r2<1 6.22)
SS,,

The total sum of squares denoted by SST is the total variation in the observed values of the response
variable

(=y)?

SST =SS, =S(y-3) =3y’ - (6.23)

which is the same formula we use for SS,,.
The regression sum of squares, denoted by SSR, is the variation in the observed values of the response
variable explained by the regression:
SSE = Z(y-3$)’
SSR = SST - SSE
or SST =SSR + SSE (6.24)
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The ratio of SSR to SST gives the coefficient of determination. That is,

2 _SSR _SST-SSE _  SSE 625
SST  SST SST ©

This formula shows that we can also interpret the coefficient of determination as the percentage reduction
obtained in the total squared error by using the regression equation instead of the mean, y, to predict the
observed values of the response variable.

The coefficient of determination, denoted by r2, represents the portion of SST that is explained by the
use of the regression model. Hence,

L _bSS,
55, (6.26)
and 0<rr<i

The value of 72 is the proportion of the variation in y that is explained by the linear relationship between x
and y. The coefficient of determination is the amount of the variation in y that is explained by the regression
line. It is computed as

2 Explained variation _ %( 5-7)°
Total variation S(y-y)>
The coefficient of determination, 7%, always lies between 0 and 1. A value of > near 0 suggests that the
regression equation is not very useful for making predictions, whereas a value of 2 near 1 suggests that the
regression equation is quite useful for making predictions.
Example E6.2
For the data of Example E6.1, calculate the

(a) standard deviation of errors, s,

(b) error sum of squares, SSE

(c) total sum of squares, SST

(d) regression sum of squares, SSR
(e) the coefficient of determination, r2.

Solution:

Referring to Table E6.2, we have
n =8, Zx = 360, Xy = 5131, Zx? = 20400, Zxy = 312830, Zy? = 5104841

Tr_ 360

X= 45
n 8
SIS
n 8
SSxy - ny_m = 312830—w =81935
n
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2 2
SS. =3Zx" - 7 20400- 3D _ 4500
n
2 2
SS,, =32y’ _G) 5104841—% — 1813945.875
o n
SS
_p 81935 19.5083
SS.. 4200

a=7y—bx=641.375-19.5083x

(a) The standard deviation of errors, s,

SS, —bSS Z
. [ss,, : o :\/1813945.8758 192.5083(81935)  189.5304
e _

(b) The error sum of squares, SSE

SSE = X(y - $) = 215530.5833

(¢) Total sum of squares, SST
SST =SS, = 1813945.875
(d) The regression sum of squares, SSR
SSR = SST — SSE = 1813946.875 — 215530.5833 = 1598415.2917

(e) The coefficient of determination, r>

2 _bSSy _ (19.5083)81935)
sS 1813945.875

Yy

r =0.8812

6.10 LINEAR CORRELATION

Linear correlation coefficient is a measure of the relationship between two variables. Linear correlation
coefficient measures how closely the points in a scatter diagram are spread around the regression line. The
correlation coefficient calculated for the population is denoted by p and the one calculated for sample data
is denoted by r. The linear correlation coefficient r measures the strength of the linear relationship between
the paired x-and y-quantitative values in a sample. The linear correlation coefficient is sometimes referred to
as the Pearson product moment correlation coefficient in honour of Karl Pearson (1857-1936), who originally
developed it. Square of the correlation coefficient is equal to the coefficient of determination. The value of
the correlation coefficient always lies in the range —1 to 1. Hence -1 <p <land-1<r<1.

If r = 1, it refers to a case of perfect positive linear correlation and all points in the scatter diagram lie
on a straight line that slopes upward from left to right, as shown in Fig. 6.13. If r = —1, the correlation is said
to be perfect negative linear correlation and all points in the scatter diagram fall on a straight line that
slopes downward from left to right, as shown in Fig. 6.13(b).
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When there is no linear correlation between the two variables and r is close to 0. Also, in this case,
all the points are scattered all over the diagram as shown in Fig. 6.13(c).

Ya
[ ] hd °
[ ]
) o PY o r=0
[ ]
[ ) [ ] °
° . e
» X » X
o (©)

Fig. 6.13: Linear correlation between two variables

(a) Perfect positive linear correlation, r = 1,

(b) Perfect negative linear correlation, r = —1

(c) No linear correlation, r = 0
Two variables are said to have a strong positive linear correlation when the correlation is positive and
close to 1. If the correlation between the two variables is positive but close to zero, then the variables have
a weak positive linear correlation. Similarly, when the correlation between two variables is negative and
close to —1, then the variables are said to have a strong negative linear correlation. A weak negative linear
correlation exists when the correlation between the variables is negative but close to zero. The above four
cases are shown in Figs. 6.14 (a) to (d). Figure 6.15 shows the various degrees of linear correlation.

y

(a) Strong positive correlation (a) Weak positive linear correlation
(rclose to 1) (r is positive but close to zero)

(c) Strong negative linear correlation (d) Weak negative linear correlation
(r close to —1) (r is negative and close to zero)

Fig. 6.14: Linear correlation between variables
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y y y
®
-
o
X X X
(a) Perfect positive linear correlation (b) Strong positive linear correlation (c) Weak positive linear correlation
r=1 - =
y y r=0.92 y r= 042
®
-
[ J
X X X
(d) Perfect negative linear correlation (e) Strong negative linear correlation (f) Weak negative linear correlation
r=1 r=0.92 r=0.42
y
-
[ J
X

(g) No linear correlation (linearly uncorrelated)
r=0

Fig. 6.15: Various degrees of linear correlation

The simple linear correlation, denoted by r, measures the strength of the linear relationship between two
variables for a sample and is calculated as

SS

Xy
[ S Sxx S Syy (627)

It should be noted here that r and b calculated for the same sample will always have the same sign.

Properties of the Linear Correlation Coefficient r

1. The value of r is always between —1 and +1 inclusive. That is, -1 < r < 1.
2. The values of r do not change if all values of either variable are converted to a different scale.
3. The value of r is not affected by the choice of x or y. Interchange all x- and y-values and the value of

r will not change.
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4. ‘r’ measures the strength of a linear relationship. The magnitude of r indicates the strength of the
linear relationship. A value of r close to —1 or to 1 indicates a strong linear relationship between the
variables and that the variable x is a good linear predictor of the variable y. That is, the regression
equation is extremely useful for making predictions. A value of r near 0 indicates at most a weak linear
relationship between the variables and that the variable x is a poor linear predictor of the variable y.
That is, the regression equation is either useless or not very useful for making predictions. It is not
designed to measure the strength of a relationship that is not linear.

5. The sign of r suggests the type of linear relationship. A positive value of r suggests that the variables
are positively correlated, meaning that y tends to increase linearly as x increases, with the tendency
being greater the closer that r is to 1. A negative value of r suggests that the variables are negatively
linearly correlated, meaning that y tends to decrease linearly as x increases, with the tendency being
greater the closer that r is to —1.

6. r reflects the slope of the scatter plot. The linear correlation coefficient is positive when the scatter
plot shows a positive slope and is negative when the scatter plot shows a negative slope.

7. The sign of r and the sign of the slope of the regression line are identical. If 7 is positive, so is the
slope of the regression line. That is, the regression line slopes upward. If r is negative, so are the
slope of the regression line and the regression line slopes downward.

Explained and Unexplained Variation

The total variation is defined as 3(y — y)? i.e., the sum of the squares of the deviations of the values of y
from the mean y . This can be written as

S(y=y) =Z(y-3+2(G-)’ 628)
where y is the value of y for given values of x as estimated from y = a + bx, a measure of the scatter about

the regression line of y on x.

The first term on the right side of Eq. (6.28) is called the unexplained variation while the second term
is called the explained variation. The deviations y—7y have a definite pattern while the deviations y — ¥
behave in a random or unpredictable manner. Similar results hold true for the variable x.

The ratio of the explained variation to the total variation is called the coefficient of determination. If
there is zero explained variation i.e., the total variation is all unexplained, then this ratio is zero. If there is
zero unexplained variation i.e., the total variation is all explained, the ratio is one. In all other cases, the ratio
lies between zero and one. The ratio is always non-negative.

The quantity, r, is called the coefficient of correlation, and it is given by

=t

=t

Explained variation
(6.29)

Total variation

r varies between —1 and +1. The signs + are used for positive linear correlation and negative error correlation
respectively. ‘7’ is a dimensionless quantity. The coefficient of determination equals the square of the linear
correlation coefficient.
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Example E6.3

Determine the correlation coefficient for the data given in Example E6.1.

Solution:

Refer to the solutions obtained earlier for Examples E6.1 and E6.2. We have
S8y, = 81935, 8§, =4200 and SS,, = 1813945.875

oSSy 81935 _
58,58,y /(4200)(1813945.875)

Hence, 9387

6.11 LINEARISATION OF NON-LINEAR RELATIONSHIPS

Linear regression provides a powerful technique for fitting a best line to data. There exists many situations
in science and engineering that show the relationship between the quantities that are being considered is
not linear. There are several examples of non-linear functions used for curve fitting. A few of them were
described in Table 6.1.

Non-linear regression techniques are available to fit these equations in Table 6.1 to data directly. A
simpler alternative is to use analytical manipulations to transform the equations into a linear form. Then
linear regression can be used to fit the equations to data.

For instance, y = bx™ can be linearised by taking its natural logarithm to give

Iny=/Inb+mlnx (6.30)

A plot of /ny versus /nx will give a straight line with a slope of m and an intercept of /nb as shown in
Fig. 6.16.

‘n yA

Slope =m

/ Intercept = ¢nb

e} »(n x

Fig. 6.16: Linearised version of the exponential equation y = bx™

Many other non-linear equations can be transformed into linear form in a similar way. Table 6.2 lists several
such equations.
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Table 6.2
Non-linear . Relationship to Values for least
No. . Linear form 5 & .
equation y=a+bx squares regression
L y=cx" fn(y) = m/n(x) + fn(c) | y=/,n(y), X=/n(x) | ¢n(x;) and /n(y;)
b=m, a= /n(c)
2. y=ce™ In(y) = mx + ¢n(c) y=/In(y), X=X x; and /n(yj)
b=m, a = /n(c)
3. |y=c10™ | log(y)=mx+logc y=log(y), x=x x; and /n(y;)
b =m, a=log(c)
4. 1 ~ 1 1
= —=mx+c g=—, X=X xjand —
mx +c¢ y y Yi
b=m,a=c
5. mx 1 ¢ 1 R S|
= —=—t— y=—, X=— — and —
c+x y mx m y X X; Y,
b=— ,a= 1
m m
6. | xy’=d 1 1 §=logy, X=logx | logx;andlogy;
Gas equation | 108 _EIOg d _EIOg X | |
a=—logd, b=—
c c
7. | y=cd* logy=logc+xlogd g—logy, X =x x; and log y;
a=logc,b=1logd
8. y:C+d\/; y=C+d)A( 5}:y and )’i:\/; \/)Tiandyi
where % =+/x a=candb=d

The curves in Figure 6.17 may be used as guides to some of the simpler variable transformations.

y=c+dvx
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y = a + b[log(x)]

y=a+bx?

y = a + box + cx? y = a + box + cx?+ dx®

log(y) = a + box +0cx2 log(y) = a + box + cx2+dx3

X X

Fig. 6.17: Non-linear data curves
Example E6.4

Fit y = cx™ (power function) to the data in Example E6.1 using a logarithmic transformation.

Solution:

The data can be set up in tabular form as shown in Table E6.4.

Table E6.4
ilx |y logx; |logy; | (logx)’ | (logx)(logy;)
1 10 24 | 1.0000 | 1.3802 | 1.0000 1.3802
2 20 68 | 1.3010 | 1.8325 | 1.6927 2.3841
3 30 378 | 1.4771 | 2.5775 | 2.1819 3.8073
4 40 552 | 1.6021 | 2.7419 | 2.5666 4.3928
5 50 608 | 1.6990 | 2.7839 | 2.8865 4.7298
6 60 | 1218 | 1.7782 | 3.0856 | 3.1618 5.4867
7 70 831 | 1.8451 | 2.9196 | 3.4044 5.3870
8 80 | 1452 | 1.9031 | 3.1620 | 3.6218 6.0175
> | 360 | 5131 | 12.606 | 20.483 | 20.516 33.585

The means are computed as

_ Slogx 12606

n

Zlogy 20.483
n

=1.5757

=|

¥ =2.5604
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The slope and the intercept are then calculated using Eqs. (6.13), (6.14), (6.15) and (6.16).

SSyy _ nX(logx;)(log y;) — (Zlogx;)(Zlog y;,)  8(33.585) - (12.606)(20.483)

SS.. nZlogx? —(Zlogx;)* 8(20.516) — (12.606)>

b= =2.0055

a=y—bx =2.5604-2.0055(1.5757) = - 0.5997

The least-square fit is
log y =—0.5997 + 2.0055 log x
The fit along with the data is shown in Fig. E6.8.
Transforming to the original coordinates, we have
¢ = 1070597 = 0.2514 and m = 2.0055
Hence the least-squares fit is
y = 0.2514 x20055

6.12 POLYNOMIAL REGRESSION

The least-squares procedure described in earlier sections can be readily extended to fit the data to a higher
order polynomial. Consider a second-order polynomial or quadratic:

y=a+bx+cx*+e 6.31)

The sum of the squares of the residuals is

M-

S, =

(v, —a—bx;—cx})’ 632)
1

1

To generate the least-squares fit, we take the first derivative of Eq. (6.32) with respect to each of the unknown
coefficients of the polynomial.

as, d

—r= =2Y % (y; —a—bx; —cx?) 633)
i=1

as

n
= = 2% x*(y; —a—bx, —cx}
ac ; l(yl 1 l)

Equations (6.33) are set equal to zero and rearranged to obtain the following set of normal equations:
na+[2xl}b+(2xi2]c = 2 y;
i=1 i=1 i=1
(inja+(2x[2]b+(2xf]c= X;y; (6.34)
i=1 i=1 i=1

i=l1
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[ixf)a+[ix?)b+[ix?]c: zn:xl.zyl.
i=1 i=1 i=1 i=1

Equations (6.34) are all linear equations in three unknowns: a, b and c. These coefficients a, b and ¢ can be
determined directly from the observed data. The above procedure can be easily extended to an m" order
polynomial as in

y=a+bx+cx>+d3+ -+ 70" +e (6.35)

Hence, the determination of the coefficients of an m™ order polynomial is equivalent to solving a system of
(m + 1) simultaneous linear equations.

The standard error in this case is given by

Sr
Sy/)C = ’m (6.36)

The coefficient of determination, r2, can be computed for a polynomial regression with Eq. (6.25).

Example E6.5

Fit a second-order polynomial to the data in Table E6.5 and determine the total standard deviation, the standard
error of the estimate and the correlation coefficient.

Table E6.5

x|0[1]2 |3 [4 |5
vi |28 14]127 41|61

Solution:
Table E6.5(a) and (b) shows the computations for an error analysis of the quadratic least-squares fit.
Table E6.5(a)

Xi | Vi XiYi x? x?yi x? xf
0 2 0 0 0 0 0
1 8 8 1 8 1 1
2 14 | 28 4 56 8 16
3 27 81 9 243 27 81
41 41 | 164 | 16 656 | 64 | 256
5 61 | 305 | 25| 1525 | 125 | 625
> | 15| 153 | 586 | 55 | 2488 | 225 | 979

Table E6.5(b)

X 1 Yi (v _y)z (y; —a—bx, _Cxiz)z
0 2| 5523 0.2500
1 8 306.3 1.3391
2| 14 132.3 0.6862
31 27 2.3 0.2951
41 41 240.3 0.5300
51 61 1260.3 0.1282
Y | 15| 153 | 2493.50 3.2286
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Hence, the simultaneous linear equations are

6 15 55||a 153
15 55 225|ib;=1 586
55 225 979||c 2488

Refer to Appendix-C (Cramer’s rule for solving a system of linear algebraic equations).

6 15 55
Here D=[15 55 225|=3920
55 225 979

153 15 55
D, =| 586 55 225/=9800
2488 225 979

6 153 55
D, =15 586 225|=9884
55 2488 979
6 15 153
Dy;=|15 55 586|=7140
55 225 2488
D, 9800
Therefore, a= El = ﬁ =25
poD2 9884 o4
D 3920
= Dy - 7140 =1.8214
D 3920

These equations can also be solved to determine the coefficients using MATLAB:
These equations can be solved to determine the coefficients. Here, we use MATLAB.

>>A =1[6 15 55; 15 55 225; 55 225 979];
>>b = [153; 586; 2488];

x =Alb
x =25 25214 1.8214
or a =25,b=25214, and c = 1.8214.

Hence, the least squares quadratic equation for this problem is

y =2.5+2.5214x + 1.8214%2
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The standard error of the estimate is based on the regression polynomial given by Eq. (6.36), where

S, =ZX(y-79)*. Here, we have

Sy = S _ |32 _\oam
n—(m+1) \6-(2+1)

The coefficient of determination is given by Eq. (6.25)

S, =S,  2493.5-3.229

r =0.9987
S, 2493.5
where S, =2(y; — v)?
and S, =2y, -9’

Therefore, the correlation coefficient is r =+/0.9987 = 0.99935 . These results show that 99.935% of the
original uncertainty has been explained by the model.

6.13 QUANTIFICATION OF ERROR OF LINEAR REGRESSION

Noting that the sum of the squares is defined as

n
S, = 2 (y;—a—bx; —cxy; )2 6.37)
i=1
Equations (6.46) is similar to the equation

S, =3 -3 (639)
i=1

In Eq. (6.38), the squares of the residual represented the squares of the discrepancy between the data and
a single estimate of the measure of central tendency (the mean). The squares of the residual represent the
squares of the vertical distance between the data and another measure of central tendency (the straight
line). If the spread of the points around the line is of similar magnitude along the entire range of data and the
distribution of these points about the line is normal, then the least-squares regression will provide the best
estimates of a and b. This is known as the maximum likelihood principle. Also, if these criteria are met, a
standard deviation for the regression line can be determined as

S, = s 6.39
v/ n-2 ( )

where S, is called the standard error of the estimate.

The difference between the S; and S, quantifies the improvement or error reduction due to describing
the data in terms of a straight line rather than as an average value. The difference is therefore normalised to
S; to give
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(6.40)
where 72 is called the coefficient of determination and r is the correlation coefficient. For a perfect fit,

S, =0, and 7 = 1, indicating that the line explains 100% of the variability of the data. For 2 =0, S, = S, and
the fit represents no improvement. An alternative formulation for r is given by

: (,J’J@”)

nZ(x ¥i)
r = =

an—Zx [nZy, Zy,J

S (85

i=1

Example E6.6

Determine (a) the total standard deviation, (b) the standard error of the estimate and (c¢) the correlation
coefficient for the data in Example E6.1.

Solution:

Table E6.6 shows the data and summation to compute the goodness-of-fit statistics. From Example E6.1, we
have a = -236.50, b = 19.5083, x =45 and y = 641.375.

Table E6.6
1| x4 Vi a + bx; (y,—-y)’ (y; — a— bx;)’
1| 10 24 | —41.4167 | 381151.8906 4279.3403
21 20 68 | 153.6667 | 328758.8906 7338.7778
31 30| 378 | 348.7500 | 69366.3906 855.5625
4| 40| 552 | 543.8333 7987.8906 66.6944
51 50| 608 | 738.9167 1113.8906 | 17139.1736
6 | 60| 1218 | 934.0000 | 332496.3906 | 80656.0000
7 70| 831 1129.0833 | 35957.6406 | 88853.6736
8 | 80 | 1452 | 1324.6667 | 657112.8906 | 16341.3611
> | 360 | 5131 | 5131 1813945.875 | 215530.583

The standard deviation is given by

where S, is the total sum of the squares of the residuals between the data points and the mean.

S, = ‘/—181389451'875 =476.1746

Hence
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The standard error of the estimate is

sz\/ S, =\/215530.583 _ 164.1320
’ n-2 8-2

Since Sy, < S, the linear regression model has merit.

The coefficient of determination 72 is given by Eq. (6.41)

2 S, =S, 1813945.875-215530.583
S 1813945.875

=0.8812

r
t

or r=+/0.8812 = 0.9387

These results indicate that 93.87% of the original uncertainty has been explained by the linear model.

6.14 MULTIPLE LINEAR REGRESSION

Consider a function y which is a linear function of x; and x, as in
y=a+bxi+cxy+e 6.42)

Equation (6.42) is quite useful in fitting experimental data where variable being studied is often a function of
two other variables. For this two-dimensional case, the regression line becomes a plane. The best values of
the coefficients are obtained by formulating the sum of the squares of the residuals:

S, =Y (y;—a—bx; —cxy,;) (6.43)
i=1

Differentiating Eq. (6.43) with respect to each of the unknown coefficients, we get

A <

L=-2 —a—bx;;—cx,;
aCl Z;(yl 1,i Z,t)
aS u

L=-2) x,(y;—a—bx;; —cx,;
ab ; l,t(yt 1,i 2,1)
A

n
—L = _22362,5()’,‘ —a—bx; —cxy;)
dc i=1

The coefficient giving the minimum sum of the squares of the residuals are obtained by setting the partial
derivatives equal to zero and expressing the result in matrix form as

n n n n

)y DETEEDY br=1%
X1,i X1,i X1,i%2,i = X,i Vi (6.44)

i=1 i i i=1

n n

2
2 Xo.i Z X,iX2,i Z X2 ¢ Z X2.iYi
Li=1 i i i=1
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Example E6.7

The following data was generated from the equation y = 7 + 3x; + 4x,. Use multiple linear regressions to fit
this data.

X1
X2

oo
N | —
— N
SV
W |
—_
(SRS
~|O

Solution:
Table E6.7(a)

Yi X1i | X2, xi . X1.i X2,i x;i X2iYi | X1iYi

7 0 0 0 0 0 0 0

18 1 2 1 2 4 36 18

17 2 1 4 2 1 17 34

22 1 3 1 3 9 66 22

39 4 5 16 20 25 195 156

32 7 1 49 7 1 32 224

25 2 3 4 6 9 75 50

23 0 4 0 0 16 92 0
Iz[183]17]19] 75 40 | 65| 513 | 504

The summations required for Eq. (6.44) are computed in Table E6.7(a) as shown above. Substituting these
values in Eq. (6.44), we get
8 17 19||a 183
17 75 40 |<b;=4504
19 40 65]|c 513

which can be solved using MATLAB.

Refer to Appendix-C (Cramer’s rule for solving a system of linear algebraic equations).

& 17 19
D=|17 75 40|=6180
19 40 65

183 17 19
D, =504 75 40|=43260
513 40 65

8 183 19
D, =|17 504 40|=18540
19 513 65

8 17 183
D; =17 75 504]=24720
19 40 513
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D, 43260

D 6180
_D, 18540 _
D 6180
Dy 24720
"D 6180

MATLAB Program:

>>A=[8 17 19; 17 75 40; 19 40 65];
>>B = [183; 504; 5131;
x=A/B
x=T7;b=3 and c=4
or a=7,b=3, andc=4.

which is consistent with the original equation from which the data was derived.

6.15 WEIGHTED LEAST SQUARES METHOD

Referring to the sections 6.3 and 6.4 and assigning weights w; to each error, ¢; (i = 1, 2, ..., n) in Eq. (6.4)
such that Zw; = 1.

Equation (6.5) can be written as
S, = Y wly —(a+bx)l (6:45)
i=1

For S, to be a minimum, we have

3s, as

» 0 and a—b’ =0 (6.46)

We obtain the normal equations as
a+bIwx; = Zw;y; 647)
azw.x; + bIw.x? = Zwix, y; (6.43)

The solution of Egs. (6.47) and (6.48) gives the values for a and b. These values give the minimum of S, with
respect to the weight w;.

Similarly, for a parabolic equation, we need to minimise
S, =Zw[y; —(a+bx; +cx?)) (6:49)

where Zw; = 1.

For S, to be minimum, we have

s as as
D 02020 and L0 :
aa  op - M9 e 650)
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On simplification, we obtain the following normal equations to determine a, b and c.

a+bIw,x; +cEwx; = Iw,y,; (6.51)
azw;x; + wai)ci2 + 2w, 13 = 2w X;y; 6.52)
aZwixi2 + wai)ci3 + cZw[xi4 =2w;x; y; 6.53)

6.16 ORTHOGONAL POLYNOMIALS AND LEAST SQUARES APPROXIMATIO

The previous sections considered the problem of least squares approximation to fit a collections of data.
This method is also applicable for continuous data.

6.17 LEAST SQUARES METHOD FOR CONTINUOUS DATA

Let y = f(x) be a continuous function on [a, b] and it is to be approximated by the n degree polynomial.
y=ag+ax + ax*+ -+ + ax" 6.54)
Here the sum of the squares of residuals S is given by
S= Jj w(O)[y = (agx + ayx* + -+ a, x")* dx (6.55)

where w(x) is a suitable weight function.

The necessary conditions for minimum S are given by

s _as _ _ s
day da,  da, (6.56)

Equation (6.56) gives the normal equations as
b
—2_[ W)Ly = (ag + a,x + ayx* +-+a,x")]dx =0
b
—2.[ w(x)[y—(ay+ax+ a2x2 +.+a,x")]xdx=0

b 2 Yy 2
—2_[ w(X)ly—(ag+a;x+ayx” +--+a,x")]x"dx=0

b
2 W)y - (g + @+ ax® 4+ a,x")] 2" dx =0 6.57)
After simplification these equations reduce to
b b b b
ao_[ w(x)dx+ al_[ aw(x)dx+ -+ anJ. x"w(x)dx =I w(x)ydx

a .[: xw(x)dx + a; .[: 2w(x) dx+ -+ a, J.j x"w(x) dx =J.j w(x)xy dx
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b b b b
aOJ- xzw(x) dx + alj x3w(x) dx+...+ anj x”+2w(x) dx =‘[ w(x)xzydx
b n b n+l b 2n b n
aof x"w(x)dx+ al_[ x"w(x)dx ++ anJ. x“"w(x)dx =f w(x)x"ydx (6.58)
Since w(x) and y = f(x) are known, Eq. (6.58) forms a system of linear equations with (n + 1) unknowns a,
ai, ...., a,. This system of equations possesses a unique solution. If
ay=ay. 1= a , ... a, = a,
is the solution for ay, ay, ...., a, then the approximate polynomial is given by

y=ag+a x+axt +ta,x"
Example E6.8
Construct a least-squares quadrate approximation to the function f(x) = sin 7x on [0, 1].
Solution:

The normal equations for Py(x) = ayx? + a;x + a are

1 1 1 1
ao_l.oldx + al_l.oxdx + az_l.oxzdx = _[0 sin Tt x dx ED)
1 1 1 1
aOJ.Oxdx + alJ.O xPdx+ azfo x = Io xsinTxdx E2)
L) '3 Vs, 2
ao_l.ox dx+a1.fox dx+a2f0x dx—_l.ox sinT xdx (E3)

Performing the integration gives

a +la +la —2 E4H
0 M T3 T g '
la +la +la —L 5
Yy tgat = (ES)
la +la +la _7'52—4 6
FhT atTSn e (E6)
Equations (E.4), (E.5) and (E.6)in three unknowns can be solved to obtain
12n% - 12
ap = 22120 050465
-
_ 2
and a, =-a, =M:4.12251
s

Consequently, the least squares polynomial approximation of degree 2 for f(x) = sin mx on [0, 1] is
Py(x) = — 4.12251x% + 4.12251x — 0.050465.
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6.18 APPROXIMATION USING ORTHOGONAL POLYNOMIALS

In section 6.19, a function is approximated as a polynomial containing the terms 1, x, x%, ...., x". These terms
are called base functions, since, any function or even discrete data are approximated based on these functions.
Here, we assume that the base functions are some orthogonal polynomials f(x), f; (x), ...., f,(x). Let the

given function be approximated as
y = apfo(x) + ai fi(x) + -+ + a, f(x) (6.59)

where f;(x) is a polynomial in x of degree i. Then the residue is given by
b
S = J.a w)ly —{ag fo(X)+a, fi(x)+-+a,f, (x)}]2 dx (6.60)
For minimum S, the conditions are given by

as EN EN
=2 20, =0,..— =0
da, da 661)

da, n

Equations (6.61) yields the following normal equations:

=2 "Wy~ (g o)+ @ i)+ -+, , (O} 1y (1) =0

2 "Wy ~ g o) + @ i)+ -+ a, £, ()1 () dx =0

—ZJ.:] w(x)ly —{ag fo(X)+a, fi(x)+--+a,f,(X)}f,(x)dx=0 (6.62)

After simplification, the i equation can be written as

aoj: W(x) fo () f; (x) dox + al.[: W) f; () f; () dc -

b ) b b
+a,[ w0 £2 (0 dv++a, [ w00 £, () fi (0 de = [ w)y f,(x) d 663)

i=01,2 ...,n

A set of polynomial {fy(x), fi(x), ...., f,(x)} is said to be orthogonal with respect to the weight function w(x)
if

b 0, ifi#j
() f(0wx)dx =1 ra

'[” S J.h fiQ(x)w(x)dx, ifi=j (6.64)

Using Eq. (6.64), Eq. (6.63) can be written as

b 2 b ,
a,.fa w(x) f, (x)dx=ja w(x) f, (x) dx i=0,1,2,...n



// Curve Fitting, Regression and Correlation // 221

b
["wy fi(xdx
Hence, a; = “b—, i=0,1,2,....n (6.65)
_[ w(x)fi2 (x) dx
From Eq. (6.65), we can find the values of ay, ay, ...., a, and the least squares approximation is obtained by
substituting these values in Eq. (6.59). However, the functions fy(x), fi(x), ...., fu(x) are unknown. Several

orthogonal functions are available in literature. A few of them are given in Table 6.3.

Any one of the orthogonal functions can be selected to fit a function dependent on the given problem.

Table 6.3: Some standard orthogonal polynomials

Name fi(x) | Interval w(x)
Legendre P.(x) | [-1,1]
Leguerre | Ly(x) | [0,00] | €™
Hermite Hy(X) | (=00, 00) | o’

Chebyshev | T,(x) | [-1,11 | (1-x)™"

6.19 GRAM-SCHMIDT ORTHOGONALISATION PROCESS

Let f;(x) be a polynomial in x of degree i and {f;(x)} be a given sequence of polynomials. Then the sequence

%

of orthogonal polynomials [f, (X)} over the interval [a, b] with respect to the weight function w(x) can be

generated by the following equation

i—1
fF=x"=Ya,f (x) i=1,2,....n (6.66)

r=0

where the constants are a;,, and f(;k (x)=1.

To obtain a;,, we multiply Eq. (6.75) with w(x) f,: (x),0<k<i-1 and integrating over [a, b], we obtain

b o s b ;o D
[ F s cow@dx=[ ¥ £, cow@ dx = ¥ a4, £ () £, (w0 d (6.67)
r=0
Using the property of orthogonal polynomial, Eq.(6.67) becomes

b ;o b )
[7% £ oo dv= gy, £ (ow(x) v =0

fb X £ () w(x) dx
U AR w d

or a ) 0<n<i-1 (6.68)

Hence, the set of orthogonal polynomials { fi* (x)} are given by

fo)=1
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i—-1
FO=x-Ya,f, ., =12 ...n

r=0

ﬁﬂﬁumumx

ir = b ¥
[ #7 @wedx

where a (6.69)

For the discrete data, the integral is replaced by summation.

Example E6.9

Use Gram-Schmidt orthogonalisation process to find the first two orthogonal polynomials on [-1, 1] with
respect to the weight function w(x) = 1.

Solution:
Let fo =1
Hence K )= x=ay fy (%)
1
J. X dx
where Ay == =0
f dx
-1
or ffk x)=x

The second orthogonal polynomial is given by

fr () =x"—ay fo (X)—ay f; (x)

x2dx 1
where Ay == =—,
dx 3
-1
1
f_lxz-xdx
ay, S =0
J. x“dx
-1
« » 11,
Hence, fHr(x)=x —§=§(3x -1

Thus, the first two orthogonal polynomials are

* * B 1
fox)=1 fi (x)=x and f2 (x)=§(3x2—1)
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6.20 ADDITIONAL EXAMPLE PROBLEMS AND SOLUTIONS

Example E6.10

Determine the equation to the best fitting exponential curve of the form y = ae? for the data given in Table
E6.10.

Table E6.10

x| 1 3 S| 7109
y | 11510595 | 85| 80

Solution:
Refer to Table E6.10(a).
Table E6.10(a)

x|y | logyi | x? | xilogy;
1| 1]115|2.0607 1| 2.0607
2| 31105 |2.0212 9] 6.0636
30 5] 95]19777 | 25| 9.8886
4| 7| 8519294 | 49 | 13.5059
51 9] 80 |1.9031 | 81| 17.1278
> | 25 | 480 | 9.8921 | 165 | 48.6466
Given y=ae?™
The normal equations are
Zlog Vi :5A+B2x,» (El)
Txlogy, =AZx;+BEx’ (E2)

where A =log a and B = b log e.
Solving the two normal Egs.(E.1) and (E.2), we get

A =2.0802 and B =-0.0203

Hence a = antilog of A = 10%9802 = 120.2818
-0.0203
and b=B/loge= =-0.0075
loge

Hence, the fitted equation is y = 120.2818 ¢-0-0075x,

Example E6.11

For the data given in Table E6.11, find the equation to b est fitting curve of the form y = ab*.
Table E6.11

X 1 2 3 4 5
y | 130 | 150 | 175 | 190 | 240
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Solution:
The calculations are shown in Table E6.11(a).
Table E6.11(a)

X y logy x| x logy | §(estimated)
1130 21139 | 1| 2.1139 129.2062
21150 | 2.1761 | 4| 4.3522 149.5433
31175 | 22430 | 9| 6.7291 173.0814
41190 | 22788 | 16 | 9.1150 | 200.3144
51240 | 2.3802 | 25 | 11.9011 | 231.8555
> | 15] 885 | 11.192 | 55 | 34.2113 | 884.0108
The normal equations are obtained as follows:
y = ab* E.D)
Taking logarithms (base 10) on both sides of the above Eq.(E.1), we get
logy =loga+xlogb E2)
or Y=A+Bx (E3)

where Y =1logy, A=1logaandB =1logb.

Hence, the normal equations are

SY = nA + BEx E4)
3xY = AZx + BZx? ES)
Substituting the values from Table E6.9(a) into Egs.(E.4) and (E.5), we have
11.1920 = 5A + 15B E06)
342113 = 15A + 55B E.T)

Solving Eqs.(E.6) and (E.7), we obtain
A =2.0478 and B=0.0635
Hence a = antilog of A = 1029478 = 111.6349

b = antilog of B = 1090635 = 1,1574
Hence the fitted equation is y = 111.6349(1.1574)*. The estimated values of y (denoted by ¥) are shown in
the last column of Table E6.9(a).

Example E6.12
For the data given in Table E6.12, find the equation to best fitting curve of the form xy* = b.
Table E6.12

x | 200 | 150 | 100 | 60 | 40 | 10
y| 1 15118124 |41]65
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Solution:

See Table E6.12(a).
Table E6.12(a)

x |y | logx [ logy | (logx)’ | (logx)(logy) | § (estimated)
200 1| 230100 5.2947 0 1.1762
150 | 1.5 ] 2.1761 | 0.1761 | 4.7354 0.3832 1.4040
100 | 1.8 | 2.0000 | 0.2553 | 4.0000 0.5105 1.8019
60 | 2.4 | 1.7782 | 0.3802 | 3.1618 0.6761 2.4675
40 | 4.1 | 1.6021 | 0.6128 | 2.5666 0.9817 3.1668
10| 6.5 1.0000 | 0.8129 | 1.0000 0.8129 7.4322
> | 560 | 17.3 | 10.8573 | 2.2373 | 20.7585 3.3644 17.4485
Given xy? =b E.D)
Taking logarithms (to the base 10) on both sides of the above Eq.(E.1), we get
logx+alogy =logb E2)
llogx+10gy—@ (ES3)
a a
The normal equations are given by
2Y = 6A + B2X EH
3XY = AZX + BZX? ES)

1
where Y=logy, X=1logx,A= —logband B =-1/a
a

Solving Egs. (E.4) and (E.5), we obtain
A = 1.4865 and B =-0.6154

Therefore a=-1/B = -1/-0.6154 = 1.6250
and b = antilog of (aA) = 10(1:6250)(1.4865) = 26(),3529

Hence, the fitted equation is xy!92%0 = 260.3529.

Example E6.13
Fit the following data:

y|[11]16]19]26

to a straight line by considering that the data (2, 16) and (4, 19) are more significant or reliable with weights
6 and 11 respectively.

Solution:

Weighted Least Squares Method.

Let the straight line be y = a + bx. The normal equations are
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aXw; + bZwix; = Zw;y;

and aZwix; + bIwx? = Zwxy;

The values in Egs. (E.1) and (E.2) are calculated as shown in Table E6.13.

Table E6.13
X|y | w | wx wx” Wy | Wxy
0111 1 0 0 11 0
2116 6] 12| 24| 96| 192
4119 | 11| 44| 176 | 209 | 836
6 126| 1 6| 36| 26| 156
Total | 19 | 62 | 236 | 342 | 1184
The normal equations are
19a + 62b = 342
and 62a + 236b = 1184
The solution of Egs. (E.3) and (E.4) gives
a=11.4125 and b = 2.0188
Hence, y = 114125 + 2.0188x
Estimation of Error
x |y | w | Predicted y | Absolute error | (Absolute error)”
o111 11.4125 0.4125 0.1702
2116| 6 15.4500 0.5500 0.3025
411911 19.4875 0.4875 0.2377
6126| 1 23.5250 2.4750 6.1256
Sum of squares of errors 6.8329

Example E6.14

Consider the Example E6.14 with the modified weights 300 and 50 instead of 6 and 11.

Solution:

The modified calculations are shown in Table E6.14

The normal equations are

Table E6.14
X|y | W | wx wx” Wy | Wxy
o111 0 0 11 0
2116 (30| 60| 120 | 480 | 960
4119 |50 | 200 | 800 | 950 | 3800
6126 1 6| 36 26 | 156
Total | 82 | 266 | 956 | 1467 | 4916

82a +266b = 1467
and 266a + 956b = 4916

The solution of Egs. (E.1) and (E.2) gives

a=124144 and b = 1.6881
Hence, y=12.4144 + 1.6881x

(E.1)
(E2)

E3)
E4)

(E.1)
E2)
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Estimation of Error

x |y | w | Predicted y | Absolute error | (Absolute error)”
011 | 1 12.4144 1.4144 2.0004
2116 |30 | 15.7905 0.2096 0.0439
4119150 | 19.1666 0.1666 0.0277
6126] 1| 225427 3.4573 11.9530
Sum of squares of errors 14.0250

It is noted that when the weights on x = 2 and x = 4 are increased then the absolute error in y are reduced
at these points, but, the sum of squares of errors is increased due to the less importance of the data (0, 11)
and (6, 26).

6.21 SUMMARY

In this chapter, we have reviewed the relationship between two variables in two ways: (1) by using the
regression analysis and (2) by computing the correlation coefficient. It was shown that the regression model
can be used to evaluate the magnitude of change in one variable due to a certain change in another variable.
The regression model also helps to predict the value of one variable for a given value of another variable.
The correlation coefficient shows how strongly two variables are related. It does not, however, provide any
information about the size of change in one variable as a result of a certain change in the other variable.

Problems
6.1 Table P6.1 gives information on the monthly incomes (in hundreds of dollars) and monthly telephone
bills (in dollars) for a random sample of 10 households.
Table P6.1

Income 16| 45| 3531|3014 | 40| 15|36 40
Telephone bill | 36 | 140 | 171 | 70 | 94 | 25 | 159 | 41 | 78 | 98

Use least-squares regression to determine the coefficients a and b in the function y = a + bx that best
fits the data.

6.2  The following Table P6.2 lists the annual incomes (in thousands of dollars) and amounts of life insurance
(in thousands of dollars) of life insurance policies for six persons:
Table P6.2

Annual income | 47| 54| 26| 38| 6220
Life insurance | 250 | 300 | 100 | 150 | 500 | 75

(a) find the regression line y = a + bx with annual income as an independent variable and amount of
life insurance policy as a dependent variable.

(b) determine the estimated value of life insurance of a person with an annual income of $50,000.
6.3  Find the least squares regression line for the data on annual incomes and food expenditures of seven

households given in Table P6.3. Use income as an independent variable and food expenditure as a
dependent variable. All data is given in thousands of dollars.
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6.4

6.5

6.6

Table P6.3

Income: x 35150(22|40| 16 | 30| 25
Expenditure:y | 9| 15| 6|11 | 5] 8| 9

Table P6.4 gives data on age and crown-rump length for the foetuses. Use least-squares regression to
determine the coefficients a and b in the function y = a + bx that best fits the data:

Table P6.4

x|10]10) 13| 13| 18| 19| 19| 23| 25| 28
y | 66| 66| 108 | 106 | 160 | 165 | 176 | 227 | 234 | 279

The following data in Table P6.5 refers to the number of hours that 10 students studied for a math test
and their scores on the test:

Table P6.5

Hours studied 1117 (22112 7| 414110 9| 4
Test score 21 183190 |60 |45 |38 |74 |66 |59 |32

(a) find the equation of the least squares line that approximates the regression of the test scores on
the number of hours studied.

(b) determine the average test score of a person who studied 15 hours for the test.

The following Table P6.6 shows the first two grades, denoted by x and y respectively, of 10 students
on two mid-term examinations in applied statistics. Find the least squares regression line of y on x.

Table P6.6

Grade on first mid-term examination (X) 6050|808 |70|60]| 100|401 90| 70

Grade on second mid-term examination (y) | 80 | 70 | 70 | 90 | 50 | 80 | 95 | 60 | 80 | 60

6.7

6.8

6.9

The following Table P6.7 shows ages x and systolic blood pressure y of 12 men.
(a) determine the least squares regression equation of y on x
(b) estimate the blood pressure of a man whose age is 45 years.

Table P6.7

Age (x) 56| 42| 72| 36| 63| 47| 55| 49| 38| 42| 68| 60

Blood pressure (y) | 147 | 125 | 160 | 118 | 149 | 128 | 150 | 145 | 115 | 140 | 152 | 155

Table P6.8 shows the respective weight x and y of a sample of 12 fathers and their oldest sons. Find
the least squares regression line of y on x.

Table P6.8

Weight of father, x (kg) | 65 | 63 | 67 | 64 | 68 | 62 | 70 | 66 | 68 | 67 | 69 | 71
Weight of son, y (kg) 68 | 66 | 68| 65|69 |66 |67|65|70| 67| 68|70

Find the least squares regression line for the data on annual incomes and food-expenditures of seven
households given in Table P6.9. Use income as independent variable and food expenditure as a
dependent variable. The income and food-expenditures are in thousands of rupees.

Table P6.9

Income x 3514921 29| 15|28 25
Food expenditurey | 9| 15| 7|10| 5| 8| 85
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6.10

A car manufacturing company wanted to investigate how the price of one of its car models depreciates
with age. The company took a sample of eight cars of this model and collected the following information
on the ages (in years) and prices (in hundreds of dollars) of these cars as shown in Table P6.10.

Table P6.10

Age 81 31 6] 9 2|1 5] 6] 3
Price | 16 | 74 | 40 | 19 | 120 | 36 | 33 | 86

(@) find the regression line y = a + bx with price as a dependent variable and age as independent variable
(b) give a brief interpretation of the values of a and b calculated in part (a)

(c) predict the price of a 7-year old car of this model

(d) estimate the price of an 4-year old car of this model.

For problems P6.11 to P6.20 do the following:

Fit a least-squares regression line of the form j = a+bx for the data given in Tables P6.1 to P6.10

respectively. Assume x as the independent variable and y as the dependent variable.

6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25

(@) give a brief interpretation of the values of a and b calculated in y =a+bx.
(b) compute the standard deviation of the sample errors, s,.

(c) compute the error sum of squares, SSE.

(d) compute the total sum of squares, SST.

(e) compute the regression sum of squares, SSR.

(f) compute the coefficient of determination, r2.

(g) compute the correlation coefficient, r.

For the data given in Table P6.1.

For the data given in Table P6.2.

For the data given in Table P6.3.

For the data given in Table P6.4.

For the data given in Table P6.5.

For the data given in Table P6.6.

For the data given in Table P6.7.

For the data given in Table P6.8.

For the data given in Table P6.9.

For the data given in Table P6.10.

Fit y = bx™ (power function) in Problem 6.1 using a logarithmic transformation.

Fit y = bx™ (power function) to the data in Problem 6.2 using a logarithmic transformation.
Fit y = bx™ (power function) to the data in Problem 6.3 using a logarithmic transformation.
Fit y = bx™ (power function) to the data in Problem 6.4 using a logarithmic transformation.

Fit y = bx™ (power function) to the data in Problem 6.5 using a logarithmic transformation.
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6.26

6.27

6.28

6.29

6.30

Determine the coefficient of the polynomial y = a + bx + cx? that best fit the data given in the following
table.

x| 1 3 5 7 10
y|21]51]545]6.12] 6.62

Determine the standard error of the estimate and correlation coefficient.

The following data were collected in an experiment to study the relationship between shear strength
in kPa (y) and curing temperature in °C (x).

x| 138 140 | 146 |148 |1.52 | 1.53
y | 5.392 | 5.612 | 5.671 | 5.142 | 4.481 | 4.129

(a) fit a least-squares quadratic model of the form y = a + bx + cx? to the above data
(b) using the equation, compute the residuals.

(¢c) compute the error sum of squares and total sum of squares.

(d) compute the error variance estimate.

(e) compute the coefficient of determination.

The following data were collected in an experiment to study the relationship between the number of
kilograms of fertiliser (x) and the yield of tomatoes in bushels (y).

x| 5|10 ]30|40]50
y 321421545042

(a) fit a least-squares quadratic model of the form y = a + bx + cx? to the above data.

n

A =\2

(b) using this equation, compute the regression sum of squares Z(yi -y
i=1

n n
(c) compute the error sum of squares Z(y[ - j}i)z and total sum of squares Z(y,- - ?)2.
i=1 i=1

(d) compute the error variance estimate (b) + (c).
(e) compute the coefficient of determination, r2.
Fit a least-square parabola y = a + bx + ¢2 to the following data:

x| 0 1 2 3 |4 |5 6
y|24]21[32]56]93]146]219

Determine the coefficient of determination.

The following table gives the data collected in an experiment to study the relationship between the
stopping distance d(m)_ of an automobile travelling at speeds v(km/hr) at the instant the danger is
sighted.

(@) fit a least-squares parabola of the form d = a + bv + ¢v? to the data

(b) determine the coefficient of determination.
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Speed v(km/hr) 32 |48 64 80 96 112
Stopping distance d(m) | 16.5 | 27.5 | 19.5 | 24.5 | 29.3 | 34.2

6.31 Use multiple linear regression fit of the form y = a + bx; + cx; for the following data:

x [0 |1 |1 2 2 3 13 |4 4
X [0 |1 |2 1 2 1 12 |1 2
y | 15|18 | 12.8 | 257|204 | 35|30 |453|40.1

Compute the coefficients, the standard error of the estimate, and the correlation coefficient.

6.32 Use multiple linear regression fit of the form y = a + bx; + cx, for the following data:

x[0j0|1]2 |1 1.5] 3 3 |-1
X |[0[1]0] 1 ]2 1 2 3 |-1
y [1]6|4]|4|-2|-15]|-12]|-15]|17

Compute the coefficients, the standard error of estimate and the correlation coefficient.

6.33 Use multiple linear regression fit of the form y = a + bx; + cx, for the following data:

x|0]0]1 ] 1] 2] 3 0O 2] 1] 4
x|0]1]0] 1] 2] 05| 2] 3| 4] 1
y |3]18]|7]|12]21 |15 1312627 |24

Compute the coefficients, the standard error of estimate and the correlation coefficient.

6.34 Use multiple linear regression fit of the form y = a + bx; + cx, for the following data:

x| 0] O] 1| 1] 2]0]1]2 1]1
| 0] 1] 0] 1] 0]2]2 311
y |23[15]19]10[15|5]0|5]-10

[

Compute the coefficients, the standard error of estimate and the correlation coefficient.

6.35 Use multiple linear regression fit of the form y = a + bx; + cx, for the following data:

x| 0l O] 11| 2 0 1] 2 1] 3
x| 0 1] O]J1] O 2 21 1 31 1
y 29110234 |19]|-10]-16|-2]|-36]|-8

Compute the coefficients, the standard error of estimate and the correlation coefficient.
6.36 For the data given in Table P6.36, find the equation to the best fitting exponential curve of the form
y = aeb*.
Table P6.36

X 1| 2] 3] 4] 5
y | 100 | 90 | 80 | 75 | 70




232

// Numerical Methods //

6.37

6.38

6.39

6.40

6.41

6.42

6.43

For the data given in Table P6.37, find the equation to the best fitting exponential curve of the form
y = ae.
Table P6.37

X |2 3 4 5 6
y|38]|58]|78]|88|98

For the data given in Table P6.38, find the equation to the best fitting exponential curve of the form
y = ae.
Table P6.38

X 22| 31 41 6] 7
y 31 3814568 | 84

For the data given in Table P6.39, find the equation to the best fitting exponential curve of the form
y= ab*.
Table P6.39

x| 1[2]3]4]5
y|[22]8]3]1]035

For the data given in Table P6.40, find the equation to the best fitting exponential curve of the form
y= ab*.
Table P6.40

x]2] 4] 6] 8] 10
y |3 13[32]57]91

For the data given in Table P6.41, find the equation to the best fitting exponential curve of the form
y= ab*.

Table P6.41
x|1]3]5 7 9
y|3]12]13]0.72]|043
For the data given in Table P6.42, find the equation to the best fitting exponential curve of the form
y=xy’=b.

Table P6.42

x| 190 134 89 55 37 8.9
y 0.97 1.14 | 132] 1.63 1.92 ] 35

For the data given in Table P6.43, find the equation to the best fitting exponential curve of the form
y=xy4=b.

Table P6.43

x| 2 3 5 7 9 11
y| 125|121 | 116|114 | 1.11 | 1.10
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6.44

6.45

6.46

6.47

6.48

6.49

6.50

6.51

For the data given in Table P6.44, find the equation to the best fitting exponential curve of the form
y=xy'=b.
Table P6.44

X [232]178 |99 | 66 | 51
y| 1.1 |13 ]18]22]|25

Find a non-linear relationship of the form y = a + b log x for the data given in Table P6.45. Determine
the linear correlation coefficient.

Table P6.45

x| 1.2]4.7]83]209
y | 0.6]5.1]69]10

Fit the following data to a straight line y = a + bx by considering the weights as given in the table.
Compute the sum of squares of errors.

X 1117122112 7| 4|14]10] 9| 4
y [ 21 |83 19060 |45 |38 7466|5932
w| S| 1| 7] 1] 1] 8] 1|11] 1] 4

Fit the following data to a straight line y = @ + bx by considering the weights as given in the table.
Compute the sum of squares of errors.

x [ 16| 45| 3531|130 |14] 40| 15| 36| 40
y |50 1341107 | 9590 |44 | 120 | 47 | 110 | 120
w| 1 6 1] 3] 1] 7 1]11 1] 16

Fit the following data to a straight line y = a + bx by considering the weights as given in the table.
Compute the sum of squares of errors.

x | 47 54| 26| 38| 6220
y | 250 | 300 | 100 | 150 | 500 | 75
w 1 5 1 3 1] 7

Fit the following data to a straight line y = a + bx by considering the weights given in the table.
Compute the sum of squares of errors.

X [35]50[22]|40 |16 |30 |25
y| 9115 6|11 5| 8] 9
wl| 1] 2] 1] 2] 1| 3] 4

Fit the following data to a straight line y = a + bx by considering the weights given in the table.
Compute the sum of squares of errors.

x [10]10] 13| 13| 18| 19| 19| 23| 25| 28
y | 66|66 | 108 | 106 | 160 | 165 | 176 | 227 | 234 | 279
w|l 2] 1 3 1 4 1 5 1 6 1

Fit the following data to a straight line y = a + bx by considering the weights given in the table.
Compute the sum of squares of errors.

X 1117122112 7| 4]14]10| 9] 4
y |21 8390|6045 |38 |74 |66]|59]32
wl 1] 2] 1] 3] 1] 2] 1] 4] 1]5
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6.52

6.53

6.54

6.55

6.56

6.57

6.58
6.59
6.60

6.61

Fit the following data to a straight line y = a + bx by considering the weights given in the table.
Compute the sum of squares of errors.

X 1117122112 7] 4
y [21 83190 |60 |45 38
wl 5] 1| 7] 1] 1] 8

Fit the following data to a straight line y = a + bx by considering the weights given in the table.
Compute the sum of squares of errors.

x | 16| 45| 35|31 |30
y | 50| 134 [ 107 | 95| 90
w| 1 6 1] 3] 1

Fit the following data to a straight line y = a + bx by considering the weights given in the table.
Compute the sum of squares of errors.

X | 47| 54| 26| 38| 6220
y | 250 ]300 | 100 | 150 | 500 | 75
w 1 4 1 2 1] 7

Fit the following data to a straight line y = a + bx by considering the weights given in the table.
Compute the sum of squares of errors.

x |35]50]22]40
y | 9[15] 611
w| 2] 3] 4] 2

Fit the following data to a straight line y = a + bx by considering the weights given in the table.
Compute the sum of squares of errors.

x| 10|10] 13| 13| 18
y | 66| 66 | 108 | 106 | 160
w| 5] 2 3 7 4

Fit the following data to a straight line y = a + bx by considering the weights given in the table.
Compute the sum of squares of errors.

X 111712212 7
y | 2175196 60|45
w| 1] 2] 1] 3] 1

Construct a least-squares quadratic approximation to the function y = ¢* on [0, 1].
Construct a least-squares quadratic approximation to the function y = x In x on [1, 3].

Construct a least-squares quadratic approximation to the function y = x3 on [0, 2].

1
Construct a least-squares quadratic approximation to the function y = — on [1, 3].
X
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6.62
6.63

6.64

6.65

Construct a least-squares quadratic approximation to the function y = x> + 3x + 2 on [0, 1].

Use the Gram-Schmidt orthogonalisation process to construct ¢p(x), ¢;(x), ¢o(x) and ¢5(x) for the
interval [0, 1].

Use the Gram-Schmidt orthogonalisation process to construct ¢o(x), ¢;(x), ¢o(x) and ¢5(x) for the
interval [0, 2].

Use the Gram-Schmidt orthogonalisation process to construct ¢p(x), ¢;(x), ¢o(x) and ¢5(x) for the
interval [1, 3].

ONONO)
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CHAPTER

Numerical Integration

7.1 INTRODUCTION

If F(x) is a differentiable function whose derivative is f(x), then we can evaluate the definite integral I as

1={ ) dx=F &)~ F @, F©) =) 1)

Equation (7.1) is known as the fundamental theorem of calculus. Most integrals can be evaluated by the
formula given by Eq. (7.1) and there exists many techniques for making such evaluations. However, in many
applications in science and engineering, most integrals cannot be evaluated because most integrals do not
have anti-derivatives F(x) expressible in terms of elementary functions.

In other circumferences, the integrands could be empirical functions given by certain measured values.
In all these instances, we need to resort to numerical methods of integration. It should be noted here that,
sometimes, it is difficult to evaluate the integral by analytical methods. Numerical integration (or numerical
quadrature, as it is sometimes called) is an alternative approach to solve such problems. As in other numerical
techniques, it often results in approximate solution. The integration can be performed on a continuous
function or a set of data.

The integration given by Eq. (7.1) is shown in Fig. 7.1. The integration shown in Fig. 7.1 is called
closed since the function values at the two points (a, b) where the limits of integration are located are used
to find the integral. In open integration, information on the function at one or both limits of integration is
not required.

)4

Fig. 7.1
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The range of integration (b — a) is divided into a finite number of intervals in numerical integration. The
integration techniques consisting of equal intervals are based on formulas known as Newton-Cotes closed
quadrature formulas.

In this chapter, we present the following methods of integration with illustrative examples:

1. Trapezoidal rule.

2. Simpson’s 1/3 rule.

3. Simpson’s 3/8 rule.

4. Boole’s and Weddle’s rules.

7.1.1 Relative Error
Suppose we are required to evaluate the definite integral

1=ﬁﬂmm

In numerical integration, we approximate f(x) by a polynomial f(x) of suitable degree. Then, we integrate f(x)
within the limits (a, b). That is,

ﬁﬂmwzﬁmmw

Here the exact value if

b
=" f(x) dx
b
Approximate value = _[ O(x)dx

The difference Uab f(x)dx— J.: o(x) dx:|

is called the error of approximation and

[ reyae=[ oty
fﬂmw

is called the relative error of approximation.

exact values — approximate value

Hence, relative error of approximation =
exact value

7.2 NEWTON-COTES CLOSED QUADRATURE FORMULA

The general form of the problem of numerical integration may be stated as follows:

Given a set of data points (x;, y;), i =0, 1, 2, ..., n of a function y = f (x), where f (x) is not explicitly
known. Here, we are required to evaluate the definite integral
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I= fb ydx (12)

Here, we replace y = f(x) by an interpolating polynomial ¢(x) in order to obtain an approximate value of the
definite integral of Eq.(7.2).

In what follows, we derive a general formula for numerical integration by using Newton’s forward
difference formula. Here, we assume the interval (a, b) is divided into n-equal subintervals such that

e b—a
n
a=xy<xp<x3-<x,=b (71.3)
with X,=Xp+nh
where h = the internal size

n = the number of subintervals
a and b = the limits of integration with b > a.

Hence, the integral in Eq.(7.2) can be written as
1=["ydx (74)

Using Newton’s forward interpolation formula, we have

X
" (p-1 (p—-D(p-2)
1=j [yo+pAyo+%A2yo+%ﬁyo+m}dx (1.5)
where X =Xy + ph
! p’-p p’=3p°+2p 3
=h Yo+ PAYy + > Az)’o+ 6 Ay, +- |dp (7.6)
0

Hence, after simplification, we get

(o 2n-3) nn-2)> ,
I= ydn—nh{ + A +n( A2y + Ay e
J Yo 2 Yo 12 Yo 24 Yo @7

o

The formula given by Eq.(7.7) is known as Newton-Cotes closed quadrature formula. From the general formula
(Eq.(7.7)), we can derive or deduce different integration formulae by substituting n = 1, 2, 3, ..., etc.

7.3 TRAPEZOIDAL RULE

In this method, the known function values are joined by straight lines. The area enclosed by these lines
between the given end points is computed to approximate the integral as shown in Fig. 7.2.
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Y4

y3
Yo Y,
Y4 =
N
X0 X1 X2 X3

Fig. 7.2

Each subinterval with the line approximation for the function forms a trapezoid as shown in Fig. 7.2. The area
of each trapezoid is computed by multiplying the interval size & by the average value of the function value
in that subinterval. After the individual trapezoidal areas are obtained, they are all added to obtain the overall

approximation to the integral.

Substituting n = 1 in Eq.(7.7) and considering the curve y = f(x) through the points (xy, y) and (x;, y;)
as a straight line (a polynomial of first degree so that the differences of order higher than first become zero),

we get

" 1 h 1 h
1, :J ydx = /{yO +§Ayo}= —[yo +§(y1 —yo)}z E(yo +y)

Xo

Similarly, we have

X, h
I, =j ydx = E(yl +y2)

4

X3 h
I3 ZJ ydx:z()’z"‘)@)

X,

and so on. (see Fig.7.3)
In general, we have

Inzj ydx:a(yn—l-l_yn)

Xt

y A

2

Yn

Y+

Xn—1

Xn

Fig. 7.3

Xn+1

(7.8)

(79)
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Adding all the integrals (Eq.(7.8), Eq.(7.9)) and using the interval additive property of the definite integrals,
we obtain

z s h
Izzli:j ydx:;[)’g"‘z(h+Y2+}’3+""+)’n—1)+)’n]25[x+21] (7.10)
i1

Yo

where X = sum of the end points
I = sum of the intermediate ordinates.
Equation (7.10) is known as the trapezoidal rule.

Summarising, the trapezoidal rule signifies that the curve y = f(x) is replaced by n-straight lines joining the
points (x,, y,), i =0, 1, 2, 3, ..., n. The area bounded by the curve y = f (x), the ordinates x = xy, x = x,, and
the x-axis is then approximately equivalent to the sum of the areas of the n-trapezoids so obtained.

7.3.1 Error Estimate in Trapezoidal Rule

Let y = f(x) be a continuous function with continuous derivatives in the interval [x, x,,]. Expanding y in a
Taylor’s series around x = x,, we get

2
X % ’ X— X ”
.[xoydx:J.xu{yO"'(x_xO)yO-l-( 2|0) y0+"":|dx

2 3 4

hyo + 0y + g B (7.11)
Yo 2)’0 6)’0 24)’0 .

o h h h , W,
Likewise, 5(y0+y1)=5()’0+y(x0+h)):§ Yo+ y+hyy +7)’0+""

2 i i
= hv. + eV Ay e 7.12
Yo 2 Yo 4 Yo 2 Yo (7.12)

Hence, the error e in (xg, x;) is obtained from Eqs. (7.11) and (7.12) as
" h -1.5,
e = dx——(yg+y))=—h"yg +-
1 jxo y 2()’0 ) D Yo
In a similar way, we can write

S 1y,
e = dx—— ) +y,)=—hy/ +-
) f ydx=— (i +y2) = k']

X

_1 3 .
€=—]’l + e
3 12 Y2
-1 3.
e = — 3y 4 7.13
O V3 (7.13)

and so on.
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In general, we can write

”

_1 3
e =_h +eeee
n 12 Yn+1

Hence, the total error E in the interval (x,, x,) can be written as
3

n
E=Y e, =——[yg+y/+y5++yi] (7.14)
D)

If y”(X) is the largest value of the n quantities in the right hand side of Eq.(7.14), then we have

=15, - b-a),> , -
E=—h =——"h
D ny”(x) D Y7 (x) (7.15)
Now, since h = bza , the total error in the evaluation of the integral of Eq.(7.2) by the trapezoidal rule
n
is of the order of h2.

Example E7.1

12
Evaluate the integral _[0 e*dx, taking six intervals by using trapezoidal rule up to three significant figures.

Solution:
a=0,b=12,n=6

=b—a=ﬂ=0'2
n 6

h

X 0102 0.4 0.6 0.8 1.0 1.2
0 | 1.221 | 1.492 | 1.822 | 2.226 | 2.718 | 3.320

y= f(x) Yo Y1 y2 Y3 Ya ys Yo

The trapezoidal rule can be written as
h
1 =E[()’o +Y6) +2(y + Y2 + 3+ vy + ys5)]
02
2
I1=23278 =2.328

I=—=[(1+3.320)+ 2(1.221+1.492 +1.822 + 2.226 + 2.718)]

) 12
The exact value is = -l.o e’dx=2320.

Example E7.2

12
Evaluate fo by using trapezoidal rule, taking n = 6, correct to give significant figures.

+x?
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Solution:
1
(x)=
! 1+ x2
a=0,b=12
he b—a _ 12—0=2
n 6
X 0 2 4 6 8 10 12
1 1 1 1 1 1
y=f | 1 < = — — — | —
5 17 37 65 101 145
y 1.00000 | 0.20000 | 0.05882 | 0.02703 | 0.01538 | 0.00990 | 0.00690
Yo Y1 Y2 Y3 Ya Ys Yo

The trapezoidal rule can be written as

I =

R N>

I=

I=1.62916.

The exact value is
12

2 1 1
J. 2dx=tan X
0 1+x 0

Example E7.3

=1.48766

[(Yo + Y6)+2(y1 + Yo + y3+ Y4 + ¥5)]

—[(14+0.00690) +2(0.2+0.05882 + 0.02703 + 0.01538 + 0.00990)]

6
Evaluate .[2 log,, x dx by using trapezoidal rule, taking n = 8, correct to five decimal places.

Solution:
fx) =logpx
a=2,b=6,n=38
p=te 022 1 os
n 8 2
X |2 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
f(x) | 0.30103 | 0.39794 | 0.47712 | 0.54407 | 0.60206 | 0.65321 | 0.69897 | 0.74036 | 0.77815
Yo Y1 Y2 y3 Ya Ys Yo Y7 Y8

The trapzoidal rule is

h
I:E[(YO+Y8)+2(Y1+Y2+YS+)’4+YS+)’6+Y7)]
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0.5
I= E3 [(0.30103 + 0.77815) + 2(0.39794 + 0.47712 + 0.54407 + 0.60206 + 0.65321

+ 0.69897 + 0.74036 + 0.77815)]
I =12.32666

The exact value is given by

6
.[2 log,q x dx =[xlog x — x]g = 6.06685

7.4 SIMPSON’S 1/3 RULE

In Simpson’s rule, the function is approximated by a second degree polynomial between successive points.
Since a second degree polynomial contains three constants, it is necessary to know three consecutive function
values forming two intervals as shown in Fig. 7.4.

YA
Y1
Yo
Yo Ya
Y3
0 Xo X1 X2 X3 X4 »x
Fig. 7.4

Consider three equally spaced points x, x; and x,. Since the data are equally spaced, let h = x,,1 — x,
(see Fig.7.5).

Ya
Yo Y2
Y1
0 Xo X1 X2 > X
Fig. 7.5

Substituting n = 2 in Eq. (7.7) and taking the curve through the points (xy, yg), (x;, y1) and (x;, y;) as a
polynomial of second degree (parabola) so that the differences of order higher than two vanish, we obtain

X 1 h
I = fx ydx =2h[yo +4y, +EA2)’0} = E[)’O +4y+y,1 (7.16)

.. Xy h
Similarly, =] ydr=20y +4ys+ )
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X h
Iy = _“x’ ydx = E[yz; +4ys + y]

and so on.

In general, we can write

2n-2

Summing up all the above integrals, we obtain

(7.17)

(7.18)

X, h
I =_[ ydx = E[yo A4+ vzt ystot Yo ) F2(yy H Y+ Yot ot Yo,0) Yol

o

= g[X +40+2FE]

where X = sum of end ordinates
O = sum of odd ordinates

E = sum of even ordinates

(7.19)

Equation (7.19) is known as Simpson’s 1/3 rule. Simpson’s 1/3 rule requires the whole range (the given interval)

must be divided into even number of equal subintervals.

7.4.1 Error Estimate in Simpson’s 1/3 Rule
Expanding y = f(x) around x = xy by Taylor’s series, we obtain

X, _ Xo+2h . (x_x )2 ..
L ‘IXO [)’0 +(x=x)¥p +T,°y6’ +~-~1dx

o +4h2 ,~+ﬁ ,~,~+16h4 w3200 4
=zanyy _2! Yo Y Yo 41 Yo 51 Yo

4 Rt 4
=24 +2h2 i +_h3 ii + 2= iii +— v oo
Yo Yo 3 Yo 3 Yo 15 Yo

In addition, we have

h h . hz .. i 4h2 i 8h3 iii
g[yo +4y;+y,] =§{yo +4[)’0 +hy, Y Yo +-~--J+()’0 +hyp Yot Yo e
) Boo2pt 5K
=2hyy +2h%yh +4—yi 4+ Tyl vy
Yo Yo 3 Yo 3 Yo 18 Yo

Hence, from Egs. (7.20) and (7.21), the error in the subinterval (x, x,) is given by

%2 h 4 5 5 v _hs iv _hs iv
e = dx——(y, +4y, + = ———|h +on=—y) F = —
1 -fxo y 3(y0 y+y) (15 18) Yo 90 Yo 90 Yo

(7.20)

(721)

(7.22)



246 // Numerical Methods //

Likewise, the errors in the subsequent intervals are given by

-n .
ezzmylzv

-
e =—— 7.23
390 Y (7.23)

and so on.

Hence, the total error E is given by

nh5
E=Ye, = [)’o IR o '@
-(b-a) 5 i —
or E=—"Fh X
TS
where y" (x)= largest value of the fourth-order derivatives (7.24)
=b-a)n
The error in Simpson’s 1/3 rule can be written as
—nh‘ ey =)
f ©= 28301" —ear i [T ©

where a = x, < & < x, = b (for n subintervals of length £).

Example E7.4

Evaluate the integral _[;2 e*dx, taking n = 6 using Simpson’s 1/3 rule.

Solution:
S =
a=0,b=12,n=6
b-a 12-0
h= =— =2
n 6
X 0 0.2 0.4 0.6 0.8 1.0 1.2
_f 1.0 | 1.22140 | 1.49182 | 1.82212 | 2.22554 | 2.71828 | 3.32012
by S Yo Y1 Y2 y3 V4 ys Y6

The Simpson’s rule is
h
=100 +ye) + 40 + 33+ y5)+ 2002 + )l
0.2
I= KN [(1 +3.32012) + 4(1.22140 + 1.82212 + 2.71828) + 2(1.49182 + 2.22554)]

I= %[(4.32012) +4(5.7618) + 2(3.71736)]

I=2320136 = 2.32014
The exact value is = 2.3201
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Example E7.5

12 dx
Evaluate fo 1+—2 by using Simpson’s 1/3 rule, taking n = 6.
X

Solution:

1
1+ x?

f)=

a=0,b=12,n=6
_b-a 12-0

h o
n 6
X 0|2 4 6 8 10 12
_f 1 10.2]0.05882 | 0.02703 | 0.01538 0.0099 0.0069
=) Yo | Y1 y2 y3 V4 s Y6

The Simpson’s 1/3 rule is

h
I ZE[()’O +Y6) + 4+ Y3+ ¥5)+ 2y + y4)l

2
I= 3 [(1 +0.0069) + 4(0.2 + 0.02703 +0.0099) + 2(0.05882 + 0.01538)]

1=1.40201
Example E7.6

6
Evaluate _[2 log,, x dx by using Simpson’s 1/3 rule, taking n = 6.

Solution:
Sf(x) = logjox
a=2,b=6,n=06
= b—a _ 6-2 _ g
n 6 3
X 2=06/3 8/3 10/3 12/3 =4 14/3 16/3 18/3=6
_f 0.30103 | 0.42597 | 0.52288 | 0.60206 | 0.66901 | 0.72700 | 0.77815
y =) Yo Y1 y2 y3 V4 Ys Y6

The Simpson’s 1/3 rule is

h
I ZE[()’O +Y6) + 4+ Y3+ ¥5)+ 2y + y4)l

2/3
I= KN [(0.30103 + 0.77815) + 4(0.42597 + 0.60206 + 0.72700) + 2(0.52288 + 0.66901)]

I=2.32957
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7.5 SIMPSON’S 3/8 RULE

Putting n = 3 in Eq. (7.7) and taking the curve through (x,, y,), n =0, 1, 2, 3 as a polynomial of degree three
such that the differences higher than the third order vanish, we obtain

Xy
i 3 3 1 3
11=J ydx=3h[y0+5Ay0+5A2y0+§A3y0}=§h[h0+3yl+3y2+y3] (7.25)
Xo
Similarly, we get
X6 3
I, = ydx:gh[}’3+3Y4+3)’5+)’6]
Xg 3
I3 = ydx=§hw6+%h+3%+yd (7.26)
and so on.
Finally, we have
Xj’" 3
I, = ydx:ghwhﬁ+3%ma+3hmq+%n] (7.27)

Summing up all the expressions above, we obtain

XM h
I=J yﬂ:gMﬁ%ﬁ+h+ﬂ+%+%+%+w+%m+%m0

Equation (7.28) is called the Simpson’s 3/8 rule. Here, the number of subintervals should be taken as multiples
of 3. Simpson’s 3/8 rule is not as accurate as Simpson’s 1/3 rule. The dominant term in the error of this
formula is ;—3 ¥y (X). Simpson’s 3/8 rule can be applied when the range (a, b) is divsided into a number of
subintervals, which must be a multiple of 3. The error in Simpson’s 3/8 rule is e = % f v (&), where xy, &,

X, (for n subintervals of length #).

Example E7.7

12
Evaluate the integral -[0 e’dx, by using Simpson’s 3/8 rule and taking seven ordinates.

Solution:
n+l1=7 =n=6

The points of division are
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X 0 1/6 2/6 3/6 4/6 5/6 1
_f 1 | 1.18136 | 1.39561 | 1.64872 | 1.94773 | 2.30098 | 2.71828
y =1(x) Yo Y1 Y2 y3 V4 s Y6

The Simpson's three-eighth’s rule is

3h
I =?[(YO +Y6)+3(y + ya+ ya + y5)+2(y3)]

I= @ [(1 +2.71828) + 3(1.18136 + 1.39561 + 1.94773 + 2.30098) + 2(1.64872)]
I=1.71830

Example E7.8

Evaluate .[(izlj);z by using Simpson’s 3/8 rule and taking seven ordinates.

Solution:

n+1=7 =>n=6h=2
The points of division are
0,2,4,6,8, 10, 12

X 0|2 4 6 8 10 12
_f 1 1021 0.05882 | 0.02703 | 0.01538 0.00990 0.00690
y =1t Yo | Vi \p) NE Ya ys Y6

The Simpson’s three-eighth’s rule is

3
I Zgh[()’o +Y6)+3(y + ya+ ya+ y5)+2(y3)]

3
I= §2 [(1 + 0.00690) + 3(0.2 + 0.05882 + 0.01538 + 0.00990) + 2(0.02703)]

I=1.43495

Example E7.9
Repeat Example E7.6 by using Simpson’s 3/8 rule, taking n = 6, correct to five decimal places.

Solution:

The points of division are

2810 12 14 16 18
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X 6/3 8/3 10/3 12/3 14/3 16/3 18/3
_f 0.30103 | 0.42597 | 0.52288 | 0.60206 | 0.66901 | 0.727 | 0.77815
y =1(x) Yo yi Y2 y3 V4 s A
Here h= E
3

The Simpson’s three-eighth’s rule is

3-h
1 2?[()’0 +Y6)+3(y + ¥, + g+ ys)+2(y3)]

3(2/3
I= % [(0.30103 + 0.77815) + 3(0.42597 + 0.52288 + 0.66901 + 0.72700) + 2(0.60206)]

1=2.32947

7.6 BOOLE’S AND WEDDLE’S RULES

7.6.1 Boole’s Rule
Substituting n = 4 in Eq.(7.7) and taking the curve through (x,, y,), n =0, 1, 2, 3, 4 as a polynomial of degree
4, so that the difference of order higher than four vanish (or neglected), we obtain

5, 2.4 7 }
dx=4h| yo+2Ay) + = A yy +— ANy +—A
any [YO Yo 3 Yo 3 Yo 90 Yo

2h

Xy
Likewise j ydx=%(7y4+32y5+12y6 +32y, +7yg)

Xy
and so on.

Adding all the above integrals from x; to x,, where n is a multiple of 4, we obtain

*n 2h
1 =j ydx= E[7y0 +32(y+ y3+ s+ y7+) H12(y, + yg + Yo +0)

+14(y, +yg + yp )+ 7,1 (7.30)

Equation (7.30) is known as Boole’s rule. It should be noted here that the number of subintervals should be
taken as a multiple of 4.

The leading term in the error of formula can be shown as

_8 7 Vi —_—
=S,
o5 Y@
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7.6.2 Weddle’s Rule

Substituting n = 6 in Eq.(7.7) and taking the curve y = f(x) through the point (x,, y,),n =0, 1,2, 3,4, 5, 6 as

a polynomial of degree 6 so that the differences of order higher than 6 are neglected, we obtain

o 9 , 5 123, 11 s 41 }
dx=06h| yo+3Ayy + =AYy +4A yg + — A" yg + — ANy, + —A
J Y [yo Yo ) Yo Yo 60 Yo 20 Yo 140 Yo

Xo
3h
= E[)’o +5y+ Y, +6y3+ Y4 +5y5+ Y6l

41 3
Approximating mA(’yo as EAé Yo , we have, similarly, we can write

X2 3h
J ydx=m[y6 +5y7+ Y5 +6Y9 + Y10 +5y11 + 121

and so on.

Adding all the above integrals from x to x,,, where x is a multiple of 6, we obtain

% 3h
J ydx:ﬁb’o 5 +ys+y; vty yg Yo )

Xo

HO(y3+ Yo + Y15 +) + 2y + yip + g +o0) + 3, ]

(731)

(7.32)

(7.33)

Equation (7.33) is known as Weddle's rule. Weddle’s rule was found to be more accurate than most of the

7

-h P
other rules. The error estimate is given by m y"(x) . In Weddle’s rule, the number of subintervals should

be taken as multiple of 6.

A summary of the Newton-Cotes formulas and their errors is presented in Table 7.1.

Table 7.1: Summary of Newton-Cotes Formula

No. | Integral Name Integration formula Error

X h —h® .

1. J.XOI ydx | Trapezoidal Rule E[yo +yl 1}; vy (X)
X3 h K .

2. IXO ydx | Simpson’s 1/3 Rule E[y0 +4y, +vy,] 9}(1) vV (X)
X3 3h -3h° .

3. IXO ydx | Simpson’s 3/8 Rule ?[y0 +3y,+3y,+y,] ;’g vV (X)
X 2h -8 P

4. IXO4de Boole’s Rule E[7y° +32y,+12y, +32y, +7y,] %Wy“(x)
%4 3h -h’

5. IXO ydX | Weddle’s Rule E[y0 +5y, +y, +6y, +y, +5y, +y,] 120 y'(X)
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Example E7.10

12
Evaluate the integral .[0 e*dx by using Boole’s rule using exactly five functional evaluations and correct to

five significant figures.

Solution:
) 1.2 .
Taking h = vy and applying Boole’s rule, we have

2
f; fx)dx= %[7370 + 32y, + 12y, +32y;3 + 7y, ]

2 .
f; f(x)dx= 2Z;)?)[7f(0)+32f(0.3)+ 12£(0.6) + 32f(0.9) + 7f(1.2)]
X 0 (03 0.6 0.9 1.2
1 | 1.34986 | 1.82212 | 2.45960 | 3.32012
y =1(x)
Yo Y1 Y2 Y3 Ya

12
_[0 f(x) dx=0.01333 [7x1] + 32 x 1.34986 + 12 x 1.82212 + 32 x 2.45960 + 7 x 3.32012]

1.2
jo F(x) dx=231954

Example E7.11

dx

1+x7
to five significant figures.

12
Evaluate the integral Io by using Boole’s rule using exactly five functional evaluations and correct

Solution:

x 0|3 |6 9 12
y=f(x) | 1] 0.1 | 0.02703 | 0.01220 | 0.00690

The Boole’s rule is

12 2h
fo f(x)dx= = [7A0) + 32f(3) + 12£(6) + 32/9) + 7A12)]

2%X3
I= 5 [7x (1) +32x(0.1) + 12x (0.02703) + 32 % (0.01220) + 7 X (0.00690)]

I=146174
Example E7.12

12
Evaluate the integral Io e*dxby using Weddle’s rule and taking n = 6, correct to five significant figures.
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Solution:
f=e5a=x=0b=x,=12;n=6

The Weddle’s rule is

3h
I=Ebo+5y1+yz+6y3+y4+5ys+y6]

X 0 |02 0.4 0.6 0.8 1 1.2
y=f(x) | 1 | 1.2214 | 1.4918 | 1.8221 | 2.2255 | 2.7183 | 3.3201
Yo Y1 Y2 Y3 Y4 Ys Yo
_ 3(0.2)

I 0 [1+5(1.2214) + 1.4918 + 6(1.8221) + 2.2255) + 5(2.7183) + 3.3201]

I1=232011 = 2.3201.
Example E7.13

dx
1+ x?

12
Evaluate the integral fo by using Weddle’s rule and taking n = 6, correct up to five significant figures.

Solution:
a=0;b=12;n=6

pob-a_12-0_
n 6
X 0|2 4 6 8 10 12
y=f(x) | 1 | 0.2 ] 0.05882 | 0.02703 | 0.01538 | 0.00990 | 0.00690
Yo | Y1 Y2 Y3 Y4 Ys Yo

The Weddle’s rule is [ = % [yo + 5y + y2 + 6y3 + y4 + Sys + Y6l

3x2
I= 0 [1+5x0.2+0.05882 + 6 x 0.02703+ 0.01538 + 5 x 0.00990 + 0.00690]

I=1.37567

Example E7.14
Repeat Example E7.6 by using Weddle’s rule, taking n = 6, correct to five decimal places.

Solution:
a=2;b=6;n=6
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= b-—a _ 6-2 _ E
n 6 3
X 6/3 8/3 10/3 12/3 14/3 16/3 18/3
y =f(x) | 0.30103 | 0.42597 | 0.52288 | 0.60206 | 0.66901 | 0.727 | 0.77815
Yo Y1 Y2 Y3 Y4 Ys Y6
The Weddle’s rule is
3h

1=Ewo+5y1+yz+6y3+y4+5ys + Yol

3(2/3
I= (10 ) [030103 + 5 x 042597 + 0.52288 + 6 x 0.60206 + 0.66901 + 5 x 0.727 + 0.77815]
I=2.32966

Example E7.15

Repeat Example E7.6 by Boole’s rule, using exactly five functional evaluations and correct to five significant
figures.

Solution:
We use five functional evaluations here.

Taking & = 1 and applying Boole’s rule, we have
2
I= h4—5 [7f(2) + 32f(3) + 12f (4) + 32 (5) + If (6)]

2
I= 15 [7 x 0.30103 + 32 x 0.47712 + 12 x 0.60206 + 32 x 0.69897 + 7 x 0.77815]

X 2 3 4 5 6
y=1(x) | 0.30103 | 0.47712 | 0.60206 | 0.69897 | 0.77815
I=12.32950

7.7 ROMBERG’S INTEGRATION

Romberg’s integration employs a successive error reduction technique. It applies the trapezoidal rule with
different interval sizes in order to obtain some preliminary approximations to the integral to start with. The
method starts with the preliminary approximations obtained by the trapezoidal rule and then applies the
Richardson extrapolation procedure which refines these values successfully to a single more accurate
approximation.

7.7.1 Richardson’s Extrapolation

Richardson extrapolation is a simple method for improving the accuracy of certain numerical procedures,
including the finite difference approximations and in numerical integration.
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Assume that we have an approximate means of computing some quantity G. In addition, assume that
the result depends on a parameter h. Let us denote the approximation by g(h), then we have
G = g(h) + E(h), where E(h) denotes the error.

Richardson extrapolation can remove the error, provided that it has the form E(h) = ch”, where ¢ and p
are constants.

We begin by computing g(h) with some value of &, say h = h;. In this case, we have
G=gh)+chl (7.34)
Repeating the calculations with 4 = h,, such that

G = g(hy)+chf (7.35)
Now, eliminating ¢ and solving for G from Eqs.(7.34) and (7.35), we get

h P
[hl] g(hy)— g(hy)

2
G= (7.36)

Equation (7.36) is called the Richardson extrapolation formula.

h
It is general practice to use h, = ?1 and in this case Eq.(7.36) becomes

ng(};j -g(hy)
G=——“~/ (7.37)

- 27 _1

7.7.2 Romberg Integration Formula

As mentioned earlier, Romberg’s integration provides a simple modification to the approximate quadrature
formula obtained with the aid of finite difference method in order to obtain their better approximations.

Consider as an example to improve the value of the integral

1=["yar={"f( dx (738)

by the trapezoidal rule.
We can evaluate Eq.(7.38) by means of the trapezoidal rule, namely

n .X" h h
I= Z:,Ii =L“ ydx=5[yo 2ty tyz et Y, )+ ] =5 +2I1  (739)

where X = sum of end ordinates

and I = sum of intermediate ordinates.
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Equation (7.39) signifies that the curve y = f (x) is replaced by n straight lines joining the points (x;, ¥;),
i=0,1,2,3,...., n. The area bounded by the curve y = f(x) the ordinates x = xj, x = x,, and the x-axis is then
approximated equivalent to the sum of the areas of the n-trapeziums so obtained.

Now, we evaluate Eq.(7.38) by means of two different widths /; and A, in order to obtain the approximate
values I; and I, respectively. The corresponding errors E; and E, are given by

b-a)ht , _
E, =%y @)
—(b- —
E, = %y”(x) (7.40)

Noting that y”(f) is also the largest value of y"(x), we can assume that the quantities y”(x) and y”()zc) are
nearly equal.

Hence, we can write

E _IW __E hy
= 2" = 741
Noting, now that / = I} — E| = I, — E,, we have
EZ_EI :Il —12 (742)
From Eqs.(7.41) and (7.42), we have
2 2
E, :—2h2 2 (E, - E) :—zhz 2 (I -1)
hy = hy hy = hy
1,h3 - 1,h?
I=1,-E, =-12 "271
2 2 1’122 _hlg (743)

Equation (7.43) gives a better approximation for /.

In order to compute I, we let 7y = h and h, = h/2 such that Eq.(7.43) gives

2
I L Lh*
4 41, -1,

I, =1
1: 2 = =12+#
P 3 3
4
h
41 —|=1(h
R EI

or I(h,—J =—= (7.44)
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If we apply the trapezoidal rule several times successively halving &, every time the error is reduced by a
factor 1/4. The above computation is continued with two successive values are very close to each other.
This refinement of Richardson’s method is known as the Romberg integration. The values of the integral in
Romberg integration can be tabulated in the following scheme:

Romberg Integration Scheme

(3

I(h)

—
—
=
N | =
A=
o | =
Ne——

h 1 h
Where, 1(h, 5) = §{4I(EJ - I(h)}

nnny 1] (hhh hoh
[ h’_9_9_ = 41 e s _[ h’_’_
( 274 8) 3{ (2 4 8) ( 2 4)} (745)

The computations are continued until the successive values are close to each other. The general extrapolation
formula used in this scheme is

i1~ Riy

47'R
Rm

i>1,j=2,3,....,1 (7.46)
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A pictorial representation of Eq.(7.46) is shown below:

Ri-1,j—
o

T

where the multipliers o and 3 depend on j in the following manner:

il 2 3 4 5 6
o | -173 | —1/15 | —1/63 | -17255 | -1/1023
B | 4/3 | 16/15 | 64/63 | 256/255 | 1024/1023

Example E7.16
Apply Romberg’s integration to find f: S (x)dx, where f(x) = sin x.

Solution:

From the recursive trapezoidal rule in Eq. (7.9), we have

Ry, =I(m)= g[f(0)+f(n)] =0

= (5o
s (5 (G (5o
s ()3 (AT AT (o

Using the extrapolation formula in Eq.(7.46), we obtain the following table:

0

) =1.5708

Ry, 0
Ry Ry, B 1.5708 2.0944
Ry, Ry, R;; 1.8961 2.0046 1.9986

Ry, Ry, Ry3 Ryy 1.9742 2.0003 2.0000 2.0000

The above table shows that the procedure has converged. Hence, J.;I f(x)dx = R,,, =2.0000 which is of

course, the exact result.
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Example E7.17
Apply Romberg’s integration method to find J.éz(%) dx correct to five decimal places.
+x
Solution:
1
fx)=—
1+x

Let h=0.6,0.3and 0.15 or 2= 0.6, /2 =0.3 and h/4 = 0.15.

X 01]0.15 0.30 0.40 0.60 0.75 0.90 1.05 1.20
y=1f(x) | 1] 0.86957 | 0.76923 | 0.71429 | 0.62500 | 0.57143 | 0.52632 | 0.48780 | 0.45455

Applying trapezoidal rule for 4 = 0.6, we obtain

0.6
I(h) = 100.6) = I, —-(1 +0.45455) + 2(0.6250)] = 0.81132

.6
For h = 7 = 0.3, we obtain

1 (g) =103)=1,= %[(1 +0.45455) +2(0.76923+0.6250+ 0.52632)] = 0.79435

0.6
For h = T =0.15, we have

h .1
I(ZJ =1(0.15)=1; = %[(l +0.45455)+ 2(0.86957 + 0.76923 + 0.71429)
0.15
+T[2(0.6250 +0.57143+0.52632 + 0.48780)] = 0.78992
h
Now I(h,;j =1(0.6,0.3)

Therefore,  1(0.6,0.3) = %[41(0.3) ~1(0.6)] = %[4(0.79435) ~0.81132] = 0.78864

In a similar manner, we obtain

I(g,g) =1(0.3,0.15) = %[41(0. 15)-1(0.3)]= %[4(0.78992 —0.79435)] = 0.78846

h h
Hence, I(h,E,ZJ =1(0.6,0.3,0.15)

or 1(0.6,0.3,0.15) = %[41(0. 15,0.3)-1(0.3,0.6)] = %[4(0.78846) —0.78864] = 0.78832
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The computations are summarised in the table below:

0.81132

0.7864
0.79435 0.78832
0.78846

0.78992

Hence J.;'z%dx =(.78832 correct to five decimal places.
+x

Example E7.18
1 dx
Apply Romberg’s integration method to find -[0 112 correct to four decimal places. Take & = 0.5, 0.25 and
X
0.125.
Solution:

Applying the trapezoidal rule, for 4 = 0.25, we obtain

X 0]05]1

=f = —
=i (1+x?)

11 0.5
Hence I Zf =

=—[1+2(0.8)+0.5]=0.775
JT = 1+ 208)+05]

For h = 0.25, we have

X 01025 |05]075]1
y=fx)=——— | 1| 09412 | 0.8 | 0.64 | 0.5
1+x%)
Hence I= 011 d"2 = %[H 2(0.9412+0.8+0.64) +0.5] = 0.7848
+ X

Similarly, when & = 0.125, we find I = 0.7848.
Applying Eq.(7.46), we obtain the table as follows:

0.5 0.775
0.25 |0.7828 | 0.7854
0.125 | 0.7848 | 0.7855 | 0.7855

1
Hence, I = jOH—2= 0.7855 correct to four decimal places.
X
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7.8 SUMMARY

In this chapter we have presented the various techniques on numerical integration. Integration methods
such as the trapezoidal rule, Simpson’s one-third rule, Simpson’s three-eight’s rule, and Boole’s and Weddle’s
rules and their composite versions, Romberg’s integration were presented with illustrative examples. These
methods use uniformly spaced based points.

Problems

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9
7.10

7.11

7.12

7.13

Evaluate J.; cos x*dx by taking eight subintervals using trapezoidal rule.

1
Use trapezoidal rule to evaluate _[()x3dx , corresponding five subintervals.
Compute the following integral numerically using the trapezoidal rule:
1 X
I= _[Oe dx

Use(@n=1,0)n=2,(c)n=kand (d) n = 8. The exact value of I = 1.7183. Compare your computed
results in each case with the exact result.

1 dx
Evaluate J.

0112 using trapezoidal rule. Take & = 0.25.

Determine the area bounded by the curve f(x) = xe** and the x-axis between x = 0 and x = 1 using the
trapezoidal rule with an interval size of (a) h = 0.5, (b) h = 0.1. Determine the relative error in each case
given that the exact value of the integral I = 2.09726.

5

Evaluate _[1 log,, x dx, taking eight subintervals correct to four decimal places by trapezoidal rule.
7

Evaluate _[1 sin x? dx by taking seven ordinates using the trapezoidal rule.

T . . .
Evaluate J.o tsint dt using trapezoidal rule.

Repeat Problem P7.9 using Simpson’s 1/3 rule.
Repeat Problem P7.2 using Simpson’s 1/3 rule taking & = 0.25.

1
Compute the integral [ = _[0 e*dx using Simpson’s rule with n = 8 intervals rounding off the results to

4 digits.

0.6
Evaluate _[0 e*dx , taking n = 6, correct to five significant figures by Simpson’s 1/3 rule.

/2
Evaluate _[: v/cos x dx by Simpson’s 1/3 rule taking n = 6.
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5.2
7.14 Evaluate .[4 log xdx by taking seven grid points and using the Simpson’s 1/3 rule.

7.15 Repeat Problem P7.15 using Simpson’s 1/3 rule.

1

dx

7.16 Evaluate j ] by taking six equal parts using Simpson’s 1/3 rule.
0

+x?

by using Simpson’s 3/8 rule.

6
dx

7.17 Evaluate J )
ol+x

7.18 Repeat Problem P7.24 using Simpson’s 3/8 rule taking & = 1/6.

1
1
7.19 Evaluatef
ol

g dx, by taking seven ordinates, using the Simpson’s 3/8 rule.

1
7.20 Evaluate .[0 /sinx +cos x dx correct to two decimal places using Simpson’s 3/8 rule.

6

1

7.21 Evaluate J dx by using Simpson’s 3/8 rule.
, loge”

52
7.22 Evaluate J.4 log xdx by taking seven grid points. Use Simpson’s 3/8 rule.

12 g
7.23 Evaluate _[: """ dx correct to four decimal places using Simpson’s 3/8 rule.
7.24 Repeat Problem P7.24 using Simpson’s 3/8 rule.
7.25 Evaluate the integral J.él + e~ ¥ sin4x dx using Boole’s rule with & = 1/4.

7.26 Repeat Problem P7.25 using Boole’s rule.
7.27 Repeat Problem P7.2 using Weddle’s rule taking & = 1/6.
7.28 Repeat Problem P7.25 using Weddle’s rule.

7.29 Bvaluate [ log, xdx using Weddle's rule. Take n = 6.

52
7.30 Evaluate _[4 log x dx by taking seven grid points. Use Boole’s and Weddle’s rule.

172
dx
7.31 Evaluate J > using Weddle’s rule.
0o Vl-x

2

dx by using Weddle’s rule taking twelve intervals.

7.32 Evaluate J >

ol+x
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7.33 Use Romberg’s integration method to evaluate J'j'zlogxdx, given that

x |4 4.2 4.4 4.6 4.8 5.0 5.2
log> | 1.3863 | 1.4351 | 1.4816 | 1.5260 | 1.5686 | 1.6094 | 1.4684

7.34 Use Romberg’s integration method to compute ;% dx with h = 0.5, 0.25 and 0.125. Hence, finds
+X

log? correct to four decimal places.

1
7.35 Approximate the integral f(x)= Io xe “dxusing Romberg’s integration with accuracy of n = 8 intervals.

Round off results to 6 digits.
, , VR o o
7.36  Use Romberg’s integration to evaluate Io 2x“ cos x“dx .
2
7.37  Evaluate Io (x° +3x° —2)dx by Romberg’s integration.

7.38 Estimate i x)dx as accurately as possible, where f(x) is defined by the data:
0 yasp y

x |0 /4 /2 3n/d | n
f(x) | 1] 0.3431 | 0.25 | 0.3431 | 1

7.39 Use Romberg’s integration method to compute Rj 5 for the following integrals:
1 15
(a) Io x%e "dx b) J.l x°In xdx
14 /4
() J.(:I (cos x)*dx (d) J.(:I € sin 2x dx

/4
7.40 Use Romberg’s integration method to find R; 3 for the integral J: x%sinx dx .

5
7.41 Apply Romberg integration method to find _[1 f(x) dx for the following data:

X 1 2 3 4 5
y=1(x) | 24142 | 2.6734 | 2.8974 | 3.0976 | 3.2804

1
7.42 Apply Romberg’s integration method to find _[0 xM3dx.

ONORO)
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CHAPTER

Numerical Solution of Ordinary
Differential Equations

8.1 INTRODUCTION

Numerical methods are becoming more and more important in engineering applications, simply because of
the difficulties encountered in finding exact analytical solutions but also, because of the ease with which
numerical techniques can be used in conjunction with modern high-speed digital computers. Several numerical
procedures for solving initial value problems involving first-order ordinary differential equations are discussed
in this chapter.

In spite of the fact that the error analysis is an important part of any numerical procedure, the discussion
in this chapter is limited primarily to the use of the procedure itself. The theory of errors and error analysis
is sometimes fairly complex and goes beyond the intended scope of this chapter.

An ordinary differential equation is one in which an ordinary derivative of a dependent variable y with
respect to an independent variable x is related in a prescribed manner to x, y and lower derivatives. The most
general form of an ordinary differential equation of n'" order is given by

d”y d d2y dn—ly
sy .
dx" - dx? dx"™! ®1

The Eq.(8.1) is termed as ordinary because there is only one independent variable.

To solve an equation of the type (Eq.(8.1)), we also require a set of conditions. When all the conditions
are given at one value x and the solution proceeds from that value of x, we have an initial-value problem.
When the conditions are given at different values of x, we have a boundary-value problem.

A general solution of an ordinary differential equation (Eq.(8.1)) would be a relation between y, x and n
arbitrary constants which is of form

fx,y,¢1,¢ ..y cy) =0 82

If particular values are given to the constants ¢, in Eq.(8.2), then the resulting solution is called a
particular solution. There are many analytical methods available for finding the solution of the Eq.(8.1).
However, there exist a large number of ordinary differential equations in science and engineering, whose
solutions cannot easily be obtained by the well-known analytical methods. For such ordinary differential
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equations, we can obtain an approximate solution of a given ordinary differential equations using numerical
methods under the given initial conditions.

Any ordinary differential equation can be replaced by a system of first-order differential equations (which
involve only first derivatives). The single first-order ordinary differential equation with an initial value is a
special case of Eq.(8.1). It is described by

d
2. f(xy) Yy=Yypatx =xp 8.3)
dx

The description in Eq.(8.3) consists of the differential equation itself and a given solution y, at initial location
Xo. We then obtain the solution y as x ranges from its initial value to some other value.

The general solution of Eq.(8.3) can be obtained in two forms:

1. the values of y as a power series in independent variable x

2. as a set of tabulated values of x and y.

There are two categories of methods to solve ordinary differential equations:

1. One-step methods or single-step methods.

2. Step-by-step methods or marching methods.

In one-step methods or single-step methods, the information about the curve represented by an ordinary
differential equation at one point is utilised and the solution is not iterated. In step-by-step methods or the

marching methods, the next point on the curve is evaluated in short steps ahead, for equal intervals of width
h of the independent variable, by performing iterations till the desired level of accuracy is obtained.

In general, we divide the interval (a, b) on which the solution is derived into a finite number of subintervals
by the points a = xy < x| < X, ... < X, = b, called the mesh points. This is done by setting up x,, = xo + nh.

The existence of the uniqueness of the solution to an initial value problem in (x,, b) is based on Lipschitz
theorem. Lipschitz theorem states that:

(a) Iff(x,y)is areal function defined and continuous in (xq, b), ye (—oo, +o0), where xq and b are finite.

(b) There exists a constant k > O called Lipschitz constant such that for any two values y = y; and

Y=
If (e, y) = (f e, )l < klky — kol
where xe (xg, b), then for any y(xy) = o, the initial value problem [Eq. (8.3)], has unique solution for
X€E (xq, b).

Also, there are two types of methods, explicit and implicit, can be used to compute the solution at
each step. Explicit methods are those methods that use an explicit formula for calculating the value of the
dependent variable at the next value of the independent variable. In an explicit method, the right-hand side
of the equation only has all known quantities. Therefore, the next unknown value of the dependent variable,
Y +1, 18 calculated by evaluating an expression of the form:

Yn+1 = F(-xm Xn +15 yn) (84)
where x,, y, and x, ,; are all known quantities.
In implicit methods, the equation used for computing y, ,; from the known x,, y, and y, ,; has the form:

Yn+1 = F(x,, X5 415 Yn +1) (85)

Here, the unknown y, ,; appears on both sides of the equation. Generally speaking, the right-hand side
of Eq.(8.3c) is non-linear. Therefore, the equation (8.5) must be solved for y,,; using suitable numerical



//  Numerical Solution of Ordinary Differential Equations // 267

methods. In general, implicit methods give better accuracy over explicit methods at the expense of additional
effort.

In this chapter, we present among the one-step or single-step methods, Picard’s method of successive
approximations, Taylor series methods were presented. Euler’s method, modified Euler’s method, and Runge-
Kutta methods of order two and four, the Adam-Moulton predictor-corrector method and Milne’s predictor-
corrector methods were presented among the step-by-step methods or the marching methods. All these
methods will be illustrated with worked examples.

8.2 ONE-STEP METHODS OR SINGLE-STEP METHODS

In single-step explicit method, the approximate solution (x,, ., ¥, +1) is computed from the known solution
at point (x,, y,) using

Xps1 =X, + h (8.6)
Y1 =Yn t (Slope) h (87)

This is illustrated in Fig.8.1. Here in Eq.(8.6), & is the step size and the slope is a constant that estimates the

dy . : . : . s
value of I in the interval from x,, to x,,;. The numerical solution starts at the point where the initial value
X

is known corresponding to n = 1 and point (x, y;). Then, n is increased to n = 2, and the solution at the next
point, (x,, ;) is computed using Egs. (8.6) and (8.7). This procedure is repeated for n = 3 and so on until the
points cover the whole domain of the solution.

Ya
Y(X)\
T e :
Slope :
1
! Numerical
1 solution
'
Ynpaoaso 1
— | [
| ]
1 1
} } » X
Xn I< h tan+1

Fig. 8.1: Single-step explicit methods

8.2.1 Picard’s Method of Successive Approximation

d
Consider the differential equation given by Eq.(8.3), namely, d_y = f (x, y) with the initial condition y(xp) = yj.
by
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Integrating this Eq. (8.3) between x, and x, we obtain

[dy=] fexyde
or y—y():"-;f(X,Y)dx

or y=yo+ [ fxy)dx 88)

Equation (8.8) is called the integral equation since the dependent variable y in the function f(x, y) on the
right-hand side occurs under the sign of integration.

Here, the problem of solving the differential equation (8.3) has been reduced to solving the integral
Eq.(8.8). The first approximation y; of y can be obtained by replacing y by y, in f(xq, yo) in Eq. (8.8).

Therefore y, = y, + I; f(x,y9)dx 89

Similarly, the second approximation is obtained as

y2=yot [ fle ) (8.10)
Likewise Y3=Yyo+ J: S (x, yy)dx
v =yo+ ] flxyy)ds @®.11)
and so on.
Continuing this process, we obtain ys, Ve, ..., Y441, OF
Y1 = Yo t f S y,y)dx 8.12)
The sequence of {y,}, n =1, 2, 3, ... converges to the exact solution provided that the function f(x, y) is

bounded in some region in the neighbourhood of (x,, yo) and satisfies the Lipschitz condition. That is, there
exists a constant k such that | f(x,y)— f(x,y)I<kly—Yy]|, for all x. The process of iteration is concluded

when the values of y,_; and y, are approximately equal.
Example E8.1

Use Picard’s method of successive approximation to find the value of y when x = 0.1, given that y = 1 when
d

x=0and —y=3x+y2.
dx

Solution:

dy
Here d—:f(x,y)=3x+y2’x0=0,y0= 1.
X
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From Eq. (8.9)

1= Yo +J‘Xf(x, Yo)dx =y, +J‘X(3x+ o )dx = 1+J-X (3x+1)dx=§x2 +x+1 E.D)
% 0 0 2
From Eq. (8.10)

v2 =0+ [ FOey)dr=yo+ [ G+ 3] )

=1+J.X 2x4+3x3+4x2+5x+1 dx=ix5+§x4+ix3+§x2+x+l (E2)
ol 4 20 4 3 2

From Eq. (8.11)

81 27 141 17 1157
PR e A T —"x°

y3=y0+Lof(x’y2)dx=1+fo{W 20" T80 T o

+E)c5 +£)c4 +2x3 +6x%+5x+1 |dx
15 12 3

81 27 47 17 1157
1y, 10 9o, " 8, Ny

= X +—x +—x X
4400 400 240 32 1260

B B B 0012 i xe (E3)
45 12 12 2
When x = 0.1, Egs. (E.1), (E.2) and (E.3) respectively give
Yo=1
y; = 1.1150
y3 = 1.1272

Example E.8.2
Use Picard’s method of successive approximation to find the value of y for the following:

b _

@ =

2y, y @) =1

@ _

=2x -y, y(0)=1.
e x =y, y(0)

()

Solution:

(a) The stated initial value problem is equivalent to the integral equation

Y@ =1+ [ 2y(+)dr

Hence Vi () =1+ f(ijj (t)dt
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Using yg(x) = 1, we find

¥ (x) = 1+f(;‘2dt =1+2x

¥2(x) = 1+ [ 2014+ 20)dr = 1423+ 247

3
33 () =1+ [ 120420427 = 14+ 2+ 28 +4%

In general, we have

3 i ‘
y,-(x)=1+2x+2x2+4i+...+(Zx) _\ 2™
’ 3 j! 4 £
J (=0

These are the partial sums for the power series expansion of y = e2x. Hence, the solution of our initial value
problem is y = e>*.
(b) The equivalent integral equation is
y(x)=1+ jo [26 - y(1)]dt
X
Hence, Vs () =1+ Io [2t -y (t)]dt

Taking yo(x) = 1, we have

yl(x)=1+fg(2t—1)dt=1+x2 —x

_ x 2 _ 3x? X
=1+ 2|14t —t)]dt—1+7—x—?
x 3)6 x3 x4
=1+ | | 20— 143622t —£13) |dt = 1+ ———x = —+"—
n@ =1+ 2] )] 5 5 4‘3]
3x? © oxt x
=1+ | | 20 =143 121 =12+ 1*/43) |dt =1+ — —x - ——+ ——
=t 2] )] 2 2742 543
3% 3% 4t 250t
() =l+x+—-"—+—— .t 11_+ [ YA
Therefore y;(x) X Y o] T (-1 i (-1 Ay

=[2x—2]+3{2( 0} }( i 2 oy —2]+3{2( }( D 2

=0 (J+

The iterates y;(x) converge to the solution y(x) = [2x — 2] + 3 for the initial value problem.
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8.2.2 Taylor’s Series Method

Consider the differential equation

d
Do fy) with y(x) =y 8.13)
dx

Let y = y(x) be a continuously differentiable function satisfying the Eq.(8.13). Expanding y in terms of Taylor’s
series around the point x = x, we obtain

C-xy) L mx) (=)

y=yt T ot o 0 3 Yo+ (8.14)
Now, substituting x = x; = xy = h, in Eq. (8.14), we get
i 2 3
Fx) =y =y +Fy6 +7y6’+;y6”+--- (8.15)
Finally, we obtain
ho, B, K,
yn+1:yn+iyn+?yn+?yn+'" (816)
Equation (8.16) can be written as
ho, B,
Yurt = Va bt vt o) 8.17)

where O(h?) represents all the terms containing the third and higher power of A. The local truncation error in
the solution is kh? where k is a constant when the terms containing the third and higher powers of 4 are
ignored. It should be noted here that the Taylor’s series method is applicable only when the derivatives of
f(x, y) exist and the value of (x — xp) in the expansion of y = f (x) near xy, must be very small so that the series
converges. Taylor’s series method is a single-step method and works well as long as the successive derivatives
can be calculated easily.

The truncation error, due to the terms neglected in the series is given by

E= my(”“) O™ y<t<x+h (8.17a)

Using the finite difference approximation

yo (@)= 2O h}z —y'() (8.17b)

n

or E-—" Y (x+h) -y (x)] (8.17¢)
(n+1)!

Equation (8.17c¢) is in more usable form and could be incorporated in the algorithm to monitor the error in
each integration step.
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If the series in Eq.(8.17) is truncated after the term A, then the truncation error can be written as

T, =— kb <p<x +h 8.17d
) (k+1)!f (P) X <p<x ( )

Example E8.3

d
Use the second-order Taylor series method on (2, 3) for the initial value problem d_y =—xy%, y(2) = 1. Take
by

h =0.1. Compare the results obtained with the exact solution of y =— 5
¥ =

Solution:
For f(x, y) = — xy?, the first partial derivatives are f, = — y? and f, = —2xy.

Hence, the second-order Taylor’s series method [Eq.(8.17)] becomes
2 h 2 2 h 2
Yurt = Yp TR =X+ Sy 4 G263 Y0 ) ¢ = Yo+ By =, + D=1 25y,
Taking 4 = 0.1 and starting with xy = 2, yo = 1, we get
2 h 2
n=0: Yy =y(2.D) =y =y, +hxy {_to +§[—1+ 2x, yo]}
y(x;) =1+ 0.1(1)2{=2 + 0.05[-1 + 2(2)*1]} = 0.8350
_ . 2 h 2
n=1: y() = y(2.2) =y, = y; + hx {_)ﬁ +5[_1+ 2x h]}
y(x) = 0.8350 + 0.1(0.8350)%{—2.1 + 0.05[-1 + 2(2.1)%(0.8350)]} = 0.71077

The resulting approximations of y(2.0), y(2.1), ...., y(3.0) are shown in Table E8.3 along with the exact values
and the relative error, E,,.

d
Table E8.3: Second-order Taylor’s series method for % ==xy?, y(2) =1

Exact | Usingh=0.1
Y(Xn) | ya[0.1] | E,[0.1]
Xo=20 11 1 0
2.1 1 0.8299 | 0.835 | —0.0051
2.2 1 0.7042 | 0.7108 | —0.0065
2.3 1 0.6079 | 0.6145 | —0.0066
2.4 | 0.5319 | 0.5380 | —0.0061
2.5 1 0.4706 | 0.4761 | —0.0055
2.6 | 0.4202 | 0.4250 | -0.0049
2.7 | 0.3781 | 0.3823 | —0.0043
2.8 | 0.3425 | 0.3462 | -0.0037
2.9 | 0.3120 | 0.3153 | —0.0033
xg=3.0 | 0.2857 | 0.2886 | —0.0029

Xn




//  Numerical Solution of Ordinary Differential Equations // 273

Example E8.4

d
Use Taylor’s series method to solve the equation d—y = 3x + y* to approximate y when x = 0.1, given that y
X

=1 when x = 0.

Solution:
d
Here (x0, 30) = (0, D) and ¥' = d_)yc =3’
From Eq. (8.17)
3 +ﬁ i+ﬁ i[+£ m_l_ﬁ v
Yn+1 = Vn l'yn 2‘yn 31 Yn 41 Yn
yi=3x+)? ¥ at (xp) =y at (0) = 1
yii = 3 4 2yyi yiatxy =3 +2(1)(1) =5
yiii = 2(y)2 + 2yyii yil at xo = 2(1)2 + 2(1)(5) = 12
yiv = 6yiyil + yyii y¥ at xg = 6(1)(5) + 2(1)(12) = 54

Hence, the required Taylor series in Eq.(8.17) becomes

12 4
y=1+x+ix2+—x3+5—x e T 2P 128 42 e
2! 3! 4! 2 4

When x = 0.1, we have
y= 1+0.1+§(0.1)2 +2(0.1)° +%(0.1)4 4o

=1+0.1+0.025+0.002 + 0.00022 + --- = 1.12722
Example E8.5

Use the fourth order Taylor series method with a single integration step to determine y(0.2). Given that
d

Zray=x2 y0)=1

dx

The analytical solution of the differential equation is

31 4, 1, 11
y=—e " +—+x ——x+—
32 4 8" 32

Compute also the estimated error and compare it with the actual error.

Solution:

The Taylor series solution up to and including the term with 4* is given by
23 4

_ +h i+h n_l_h iii+h v 1
Yn+1 = Yn l'yn 2'yn 3‘yn 4'yn (E )
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4 W oo o
or y(h) = y(0)+hy' (0)+ o1 YO+ N "' (0)+ a1 y"(0)

The given differential equation is

dy 2
I +4y=1x
or yi=—4dy + x?
Differentiating the above equation gives
yi =4y + 2x = 16y — 4x% + 2x
yi =16y —8x +2 =64y + 16x2 — 8x + 2
YW =64y + 32x — 8 = 256y — 64x* + 32x - 8
Hence, yi(0) = 4(1) =4
Yi(0) = 16(1) =16
Yi(0) = -64(1) +2 =-62
¥(0) = 256(1) — 8 =248
For h = 0.2, Eq. (E.1) becomes

¥1(0.2) = 1+ (-4)(0.2) +%(l6)(0.2)2 + %(—62)(0.2)3 + %(248)(0.2)4 =0.4539

According to Eq.(8.17c¢), the approximate truncation error is given by

n

h
E —m[yn(x+h)— ¥ (X)]

4

or E=— [yem-y" 0] forn=4
(n+1)!

h 4
= ;w 1(0.2)- Yy (0)]
where y9(0) = 248

Y9(0.2) = 256(0.4539) — 64(0.2)% + 32(0.2) — 8 = 112.04

_02?
-5

Hence, E [112.04 -248] = - 0.0018

The analytical solution gives
31 402, 1 5 1 1
02)=— “+—(0.2)" ==(0.2)+ —=0.4515
¥(0.2) 3¢ 4( ) 8( ) 2

Hence, the actual error is 0.4515 — 0.4539 = — 0.0024.
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8.3 STEP-BY-STEP METHODS OR MARCHING METHODS

In explicit multi-step methods, the solution y, ,;, at the next point is calculated from an explicit formula. For
instance, if three prior points are used, the next unknown value of the dependent variable, y, ,;, is computed
by evaluating an expression of the form:

Yn+1 = F(-xn—Z’ Yn 2> Xn—1> Yn 15 Xn> Yn> Xn +l) (818)

Equation (8.18) is of explicit form since the right-hand side of the equation has only all known quantities. In
implicit multi-step methods, the unknown y, ,; appears on both sides of the equation, which needs to be
solved using numerical methods.

8.3.1 Euler’s Method

Euler’s explicit method (also called the forward Euler method) is a single-step, explicit method for solving a
first-order ordinary differential equation. The method uses Eqs.(8.6) and (8.7), where the value of the slope
in Eq. (8.7) is the slope of y(x) at point (x,, y,). This slope is computed from the differential equation:

d
slope = d—y = (%, ,) (8.19)

X X=X,

Euler’s explicit method is illustrated schematically in Fig. 8.2. Euler’s method assumes that for a short distance
h near (x,, y,), the function y(x) has a constant slope equal to the slope at (x,, y,). Based on this assumption,
the next point of the numerical solution (x,, .1, y, 1) is obtained by:

Xpsl =X, + h (8.20)
Yn+1 = Y +f (s yu) b @21
The error in this method depends on the value of /4 and is smaller for smaller 4.
Equation (8.21) can be derived in several ways.

Consider the differential equation

d
2oy 822)
dx

with the initial condition y(xy) = yo.

Integrating Eq.(8.22), we obtain

y=y0+] flxy)dx (823)

Suppose we want to obtain an approximate value of y say y, when x = x,. We divide the interval [x, x,] into
n subintervals of equal length, say, s, with the division point xg, xi, X,..., X,, where x = x, = xg = rh,
r= 1, 2, 3,
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yA

Yok -==

v\:\Slope: f(

Xns Yn)

X f————— %o

Fig. 8.2: Euler’s explicit method

Then, from Eq.(8.23), we have

yi=yo+[ flxy)de

Assuming that f (x, y) = f (xg, ¥p) in Xy < x < xy, the Eq.(8.24) leads to

Y1 =Yo + h f(xo, yo)
Equation (8.25) is called the Euler’s formula.

Similarly, for the range x; < x < x,, we have

=+ [ F O yydy =y b O, )

and for the range x, < x < x5, we get
y3=y2+ hf(x y2)
and so on.

Finally, we obtain

Vorl =Vn+hf(x,y), n=0,1,2,3 ...
Euler’s method accumulates large error as the process proceeds. The process is known to be very slow and
in order to obtain reasonable accuracy, the value of & needs to be smaller. It can be shown that the error in
Euler’s method is O(h) i.e., the error tends to zero as h — 0, for x = x,, fixed. The local truncation error of
Euler’s explicit method is O(h2). The global truncation error O(/1). The total numerical error is the sum of the
global truncation error and the round-off error. The truncation error can be reduced by using smaller
h (step size). However, if h becomes too small such that round-off errors become significant, the total error

might increase.

Example E8.6

Use Euler’s method to solve the following differential equation

(8.24)

(8.25)

(8.26)
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?=—ty2,y(2)= land 2 <x <3 with 2 =0.1.
X

Compare the results with exact solution from y = — 5
X2 =

Solution:
Euler’s formula given by Eq.(8.26) is
Yn+1 =yn+hf(xm yn)7 n=0,1,23, ...

or Voot = Va b=ty 32 ] = @), X = 24 (0 + D

Starting with xy = 2 and y, = 1 and taking & = 0.1, we get
n=0: Vi =Yo—h|x ¢ |=1-0.1[2(12] = 0.8 = y2.1)
n=1: 2= yi— h| x y? |=0.8 - 0.1[2.1(0.8)%] = 0.6656 = y(2.2)
n=2: Y3 =2 — h| x, y3 |= 0.6656 - 0.1[2.2(0.6656)2] = 0.5681 = y(2.3)
n=3  yy=ys—hlxy} |=0.5681 - 0.1[2.3(0.5681?] = 0.4939 = y(2.4)

The results are tabulated for x,, = 2, 2.1, 2.2, ...., 3 in the 4 = 0.1 in Table E8.6. The exact values of y(x,) were

obtained from the solution of y(n) were also shown in the table. That is, Y(x,) =— >
-

n

d
Table E8.6: Euler's method values for % =—xy?, y(2) =1

Exact | Usingh=0.1
Y(Xn) | yal0.1] | E,[0.1]
x9=2.0 11 1 0
2.1 | 0.8299 | 0.8000 | 0.0299
2.2 | 0.7042 | 0.6656 | 0.0386
2.3 | 0.6079 | 0.5681 | 0.0398
2.4 | 0.5319 | 0.4939 | 0.0380
2.5 | 0.4706 | 0.4354 | 0.0352
2.6 | 0.4202 | 0.3880 | 0.0322
2.7 | 0.3781 | 0.3488 | 0.0292
2.8 | 0.3425 | 0.3160 | 0.0265
2.9 | 0.3120 | 0.2880 | 0.0240
xg=3.0 | 0.2857 | 0.2640 | 0.0217

Xn

In the above table the error, E, = y(x,) — y,.
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Example E8.7

d
Apply Euler’s method to approximate the solution of the initial value problem 7); = —2ty* with y(0) = 1 in the

interval 0 < ¢ < 0.5, using & = 0.1 and compute the error and the percentage error. The exact solution is

i 1
@+

Solution:
Here, Eq.(8.26) becomes
Yntl = Yn + hf(-xn’ yn)

Since h=0.1 and f(x,, y,) = —2t, y,f, we have

Vosl =Va—2ht, Yo, n=0,12, ...
For h = 0.1, we set n = 0 and compute

n=0: Y11= 50— 2(0.1) Yo =1 - 2(0.1)(O0)(1)2 = 1

which will be our estimate to the value y(0.1). Continuing, we obtain

n=1: Yo = y1 = 200.1) £, i = 1 = 2(0.1)(0.1)(1)? = 0.98
n=2: 3= v, = 2(0.1) 1, 3= 0.98 — 2(0.1)(0.2)(0.98)2 = 0.9416
and so on.

The exact value is given by y=——.
" +1

Table E8.7 gives a summary of the results computed for 0 <7 < 0.5.

Error = exact value — y,, (from Euler’s method)

| error |
Percentage error = ———— x 100
exact value
From Table E8.7, we note that Euler’s method works quite well and the errors are acceptable in many practical

applications.

Table E8.7
¢ o Exact Error Percentage
value error
0 1 1 0 0
0.1]1 0.9901 | 0.0099 | 0.9998

0.2 ]0.98 0.9615 | 0.0185 | 1.9241
0.3 109416 | 0.9174 | 0.0242 | 2.6379
0.4 | 0.8884 | 0.8621 | 0.0263 | 3.0507
0.5]0.8253 | 0.8 0.0253 | 3.1625

DA WD —=oO| B
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Example E8.8

d
Apply the Euler’s method to the ordinary differential equation d—y =x+y, y(0)=1 using increments of size
X
h = 0.2. The exact solution is y = —1 — x + 2¢*. Determine the error and the percentage error at each step.

Solution:

dy
—=x+
dx Y

when x = 0 and y(0) = 1.

dy
Hence —=x+y =0+1=1 or y=1.
dx
Now, h = 0.2 and y; = yo + hf (x,, )
or yi =Yo+hf(x,y)=1+02(1.0)=12
The process is continued as shown in Table ES8.8.

Exact value at x, = 0.2 is
Yoo = —1-02+2e%2=1.2428

Table E8.8 gives the summary of the computations.

Error = exact value — value from Euler’s method.

| error |

Percentage error = ——— x 100
exact value
Table E8.8
- - Exact Error Percentage
value error
0|0 1 1 0 0
110212 1.2428 | 0.0428 3.4438
2104|148 1.5836 | 0.1036 6.5421
3106 1.856 | 2.0442 | 0.1882 9.2065
4108 |23472 | 2.6511 | 0.3039 | 11.4632
511029766 | 3.4366 | 0.46 13.3853
Example E8.9
. dy . .
Use Euler’s method to solve the initial value problem E =1-t+4y,y(0) =1, in the interval 0 < ¢ < 0.5
with & = 0.1. The exact value is
— 1 1
y= 0 L D
16 4 16

Compute the error and the percentage error.
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Solution:

Here, f(t,, v,) = 1 — t, + 4y, and thus

Ynt1 =Yn t+ (01)(1 I+ 4yn)

For n=0: yi=yo+ O -19+4y) =1+©0.1)(1-0+4) =15
n=1: 2=y +01(1 -1, +4y)=15+0.1)1-0.1+6)=2.19
The exact value are computed from
RIS B Cp
16 4 16

Error = exact value — value from Euler’s method

| error |
Percentage error = ———
exact value

Table E8.9 summarises the computed results.

Table E8.9

- - Exact Error Percentage

value error
00 1 1 0 0
110115 1.6090 | 0.109 6.7768
21021219 2.5053 | 0.3153 | 12.5864
3103 |3.146 | 3.8301 | 0.6841 | 17.8620
4104 | 44744 | 57942 | 1.3192 | 22.7783
510563242 | 8.7120 | 2.3878 | 27.4082

Example E8.10

d
Use Euler’s method to solve the following differential equation d_z =

1
Ey,y(O): land0<x<1.Use h=0.1.

Solution:
Using Eq.(8.26)
Y1 =Yo+hf(x,y)=1+0.1f(0,1)
1 1
SO, 1) =f(xo, y0) = 7% —5(1) =1/2
Hence y; = 1+0.1(1/2) = 1.05
Forn=1: v = y1+ hf(xg, y1)=1.05+ 0.1 £(0.1, 1.05)
1
where f(0.1,1.05) = 5(1 .05)=0.525
Therefore, at Xy =2h=2(0.1)=0.2y, is

vy, = 1.05 +0.1(0.525) = 1.1025
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The exact values of y = ¢¥? (from direct integration).

This procedure is repeated for n = 2, ..., 5 and a summary of the results obtained is given in Table E8.10.

Table E8.10: Euler's method versus exact solution

T2

Yn+1 Ynt1 =€
Xn Yn f(Xs yu) (Euler) | (exact)
0 1 0.5 1.05 1.0513

0.1 |1.05 0.525 1.1025 | 1.1052
0.2 | 1.1025 | 0.5513 | 1.1576 | 1.1619
0.3 | 1.1576 | 0.5788 | 1.2155 | 1.2214
0.4 | 1.2155 | 0.6077 | 1.2763 | 1.2840
0.5 ] 1.2763 | 0.6381 | 1.3401 | 1.3499

N W= OoO B

8.3.2 Modified Euler’s Method

The modified Euler’s method (also called Heun’s method) is a single-step, explicit, numerical technique for
solving a first-order ordinary differential equation. The method is a modification of Euler’s explicit method. In
Section 8.3.1 on Euler’s method, we stated the assumption in that method is that in each subinterval or step,
the derivative or the slope between points (x,, y,) and (x,.1, ¥,+1) is constant and equal to the slope of y(x)
at point (x,, y,). This assumption causes error. In the modified Euler’s method, the slope used for computing
the value of y,, is modified to include the effect of that the slope changes within the subinterval. This slope
is the average of the slope at the beginning of the interval and an estimate of the slope at the end of the
interval.

Hence, the slope at the beginning of the interval is given by

dy
dx|l = slope at x = x, = f (x,, y,) (8.27)

The slope at the end of the interval is estimated by finding first an approximate value for y, ,, written as

Yy using Euler’s explicit method.
That is Yo = Y+ f (X YR (8.28)

The estimation of the slope at the end of interval is obtained by substituting the point (x,., y,,,) in the

, dy
equation for ——
dx

d m
D = Oy (829)
dx Y=V

or

Yn4+1 18 then estimated using the average of the two slopes.

f(xn’yn)+f(xn+1’yr:n+l)h
2

That is Yor1 =Y t (8.30)
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The modified Euler’s method is illustrated in Fig. 8.3. The slope at the beginning of the interval (given by Eq.

(8.27)) and the value of ", as per Eq. (8.28) are shown in Fig. 8.3(a). Figure 8.3(b) shows the estimated

slope at the end of the interval as per Eq. (8.29). The value of y, ., obtained using Eq. (8.30) is shown in
Fig. 8.3(c).

Ya ' yA yA
v/ 0—y/ v/
\‘ y
// \/7 ynm 1 \7 Yn+1
Exact Exact " Exact
soiution % /ynm+1 solution g solution
; S Slope: Slope:
Yol ope: Yol _ m Yol _ f(Xn,Yn)+f(Xn-1, yT.)
ST ) == o O Yo 2=A e
[l ] » I t » 1 I »
Xnle— p —pl Xn+1 X Xnle—h —» Xne1 X Xnle—h —»| X1 X
(a) Slope at the beginning of (b) Estimate of the slope (c) Using the average of the
the interval at the end of the interval two slopes

Fig. 8.3: The modified Euler’s method

In modified Euler’s method, instead of approximating (x, y) by f (xo, ¥o) in Eq.(8.22), the integral in Eq.(8.23)
is approximated using the trapezoidal rule.

h
Therefore W=y + 5 [ Gy + 0 3™ ] @30

where yl(o) =y + h f (xy, yo) obtained using Euler’s formula.

Similarly, we obtain

h
"2 =y +§[f(xo,yo)+f(xl,yf”)}

h
o =0+ [ £ o)+ 0]

h
i = v+ 2L ooy + )] (832)

and so on.

Therefore, we have

n h n
yl( W= J’O+E[f(xo,)’0)+f(x1’y1( ))J »1=0,1,2,3, ... ®33)

where yl(") is the n approximation to y,.

The iteration formula given by Eq.(8.33) can be started by selecting y'” from the Euler’s formula. The formula

given by Eq.(8.33) is terminated at each step if the condition |y(" _ (D)< e, where €is a very small
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arbitrary value selected depending on the level of accuracy to be accomplished is satisfied. If this happens

for sa, n = k, then we consider y, = y,(lk ) and continue to compute the value of y at the next point by repeating

the procedure described above. Equation (8.33) can also be written as

1
Yan = ¥y + o (Ky+ Kp)+ o’ (8.33a)
where Ky =hf(x,y) (8.33b)
KZ =h+ (xn+1a Yot Kl) (8330)

Example ES8.11

d
Use the modified Euler’s method to solve the differential equation d_y = x + y? with y(0) = 1. Take the step
by
size h = 0.1.

Solution:
From Eq.(8.31), we have

h
A" =30+ 2L £ G0 v0)+ £ 03]

where O = yo + h f (x0 yo)

h
Therefore =1+ 5[(0+ 1)+ 0.1+ 1+0.1(0+ 12)2)]

=1+005[1 + (0.1 + 1.12)] = 1.1155

is the improved Euler’s estimate.

.. 2 h
Similarly 3 = v+ 2L G030+ Fnn™) |

where yl(l) = 1.1155
h
(2) 1)
o =+ LG+ G+ h f ™)

1
= 1.1155+07[(o.1+1.11552)+(0.2+(1.1155+o.1(0.1+1.11552)))]= 1.2499

is the Euler’s method estimate starting from (x;, y"). Now, starting from [x;, yo + A f(xo, yo)], we have

¥ = 11155 + 0.05[(0.1 + 1.11552) + (0.2 + 1.2499?)] = 1.2708

is the improved Euler’s estimate.
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Example ES8.12
d
Use the modified Euler’s method to obtain an approximate solution of d_)t} =-21y2, y(0) = 1, in the interval

0<¢<0.5 using h = 0.1. Compute the error and the percentage error. Given the exact solution is given by

B 1
Y (1+1%)
Solution:
For n = 0: yP=yo—2h tyy5=1-2(0.1) (0) (1> =1
h
Now i = vo+ 2220038 —20(7 ] = 1= O.DIO) (12 + ©.1) (1] = 0.99

Table E8.12 shows the remaining calculations. Table E8.12 also shows the values obtained from the Euler’s
method, the modified Euler’s method, the exact values, and the percentage error for the modified Euler’s
method.

Table E8.12
n | t, | Euler | Modified | Exact | Error | Percentage
Ya Eulery, | value Error
0 1 1 1 0 0
0.1 1 0.9900 | 0.9901 | 0.0001 0.0101

0.2 | 0.9800 | 0.9614 | 0.9615 | 0.0001 0.0104
0.3 109416 | 09173 | 0.9174 | 0.0001 0.0109
0.4 ] 0.8884 | 0.8620 | 0.8621 | 0.0001 0.0116
0.5]0.8253 | 0.8001 | 0.8000 | 0.0001 0.0125

bW =O

In the Table ES8.12,

Error = exact value — value from modified Euler’s method

| error |

Percentage error = ———————
exact value

Example E8.13
Use the modified Euler’s method to find the approximate value of y(1.5) for the solution of the initial value
d 2
problem d—y = 2xy, (1) = 1. Take & = 0.1. The exact solution is given by y = ¢* . Determine the relative error
X

and the percentage error.

Solution:

With xo = 1, yo = 1, f (% ) = 2%,y =0 and h = 0.1, we first compute y(* = yo + & f (x, o) from Eq.(8.31).

72 =y + (0.1) 2(xp, yo) = 1 + (0.1) 2(1)(1) = 1.2
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We use this value in Eq.(8.33) along with
x1=14+h=1+01=1.1

y =y, +(%j 2xy Vo +2X,y, = 1+(%) 2(D)(1)+2(1.1)(1.2) = 1.232

Table E8.13 gives the values computed for the modified Euler’s method, exact value, relative error and the

2_
percentage error. Exact value is calculated from y = e” L

Error = exact value — value from the modified Euler’s method
| error |

Percentage relative error = ———
exact value

Table E8.13
n| X, Y Exact | Absolute Percentage
value error Relative error

0|1 1 1 0 0

1] 1.1 1.2320 | 1.2337 | 0.0017 0.14

2| 1.2 | 1.5479 | 1.5527 | 0.0048 0.31

31 1.3]1.9832 | 1.9937 | 0.0106 0.53
411415908 |2.6117 | 0.0209 0.80

51 1.5 3.4509 | 3.4904 | 0.0394 1.13

Example E8.14
Repeat Example ES8.10 using the Modified Euler’s method.

Solution:
From Eqgs.(8.33a) to (8.33c), we have

1 1
K, =h s =h| = =0.1l —|=0.05
1 S (x05y0) (2)’()) (2)

1+0.05

and Kz=hf(x1,yO+K1)=h[%Kl}=0.l[ }=0.0525
The functional approximate at x; = 0.1 (n = 1) is given by

1 1
3= Yot 5 (Ki+K3) =14 (0.05+0.0525) = 105125 = 1.0513

Hence, at x, = 0.2, we have

0.05125

K, = 0.1[ }= 0.0526

1.0513+0.0526

K, =0.1[ 5

} =0.0552
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1
vy, =1.0513+ 5(0.0526+ 0.0552) =1.1051

This procedure is repeated for n = 2, 3, 4 and 5 to give the functional approximations shown in Table E8.14.

Table E8.14

n Xn Yn K1 K2 Yo+l Yo+l

(modified Euler) | (exact)
010 1 0.05 0.0525 1.0513 1.0513
11]0.1)1.0513 | 0.0526 | 0.0552 1.1051 1.1052
2102 1.1051 | 0.0526 | 0.0581 1.1618 1.1619
3103 1.1618 | 0.0581 | 0.0699 1.2213 1.2214
4104 | 12213 | 0.0611 | 0.0641 1.2839 1.2840
510.5] 1.2839 | 0.0642 | 0.0674 1.3513 1.3499

Table E8.14 clearly shows that the modified Euler’s method gives better accuracy for the same A interval
when compared with the basic Euler’s method.

8.3.3 Runge-Kutta Methods

Runge-Kutta methods are a family of single-step, explicit, numerical techniques for solving a first-order
ordinary differential equation. Various types of Runge-Kutta methods are classified according to their order.
The order identifies the number of points within the subinterval that are utilised for finding the value of the
slope in Eq.(8.7). For instance, second-order Runge-Kutta methods use the slope at two points, third-order
methods use three-points, and so on. The classical Runge-Kutta method is of order four and uses four points.
Runge-Kutta methods give a more accurate solution compared to the simpler Euler’s explicit method. The
accuracy increases with increasing order of Runge-Kutta method.

8.3.3.1 Runge-Kutta Method of Order Two

In the Runge-Kutta method of order two, we consider up to the second derivative term in the Taylor series
expansion and then substitute the derivative terms with the appropriate function values in the interval.

Consider the Taylor series expansion of the function about y,.
h2
Yne1 = Yn + hy' (X, y) + Y s 3

hz
Ynt1 =Yn t hg(-xn’ yn) + Tg’(xm yn)

h
Vel =V + I g(x,,,y,,)+5g (X5 Y1) (834

Now, substituting

: _9,0¢
g (xn’yn)_ ax+ ay g(xn’yn)

where — = g(xu, yu)
dx
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From the differential equation, we obtain

hdg hog
=y, +h| gx,,y)+——+-=—8(x,,y,
Y+l = Yn {g( oY) S oot % 8(x,,y )} (8.35)
It should be noted here that the factor inside the square brackets consisting of the derivatives may be
substituted with a function of the type ag(x + o, y + B) in a Taylor series expansion, such that from Egq.
(8.34), we have

Ynt1 =Yn t h[ag(-xn + 0O, y,+ B)] (836)

Now, expanding the function g(x, + o, v, + ) in Eq.(8.36) in a Taylor series expansion with two variables
about (x,, y,) and considering only the first derivative terms, we obtain

0 0
Yne1 = Vu +ha[g(xn,yn)+0<a—§+3£} 8.37)

Now, equating the coefficients of the respective terms on the right hand side of Eqs.(8.35) and (8.37), we
obtain

a=1
o= h2 (8.38)
and B = h2 g(xy yn)
Therefore, Eq.(8.36) becomes
h h
Yut1 = Y thg X+ Yn 5 8 (X5 V) (8:39)
Equation (8.39) can also be rewritten as
Ynt1 =Yn t hKZ (840)
where K, =hg {xn AL +ﬁ} (8:41)
2 2
in which K, = hg(x,, y,) (8.42)

Runge-Kutta method of order two is also known as the Midpoint method because the derivative is replaced
by functions evaluated at the midpoint x,, + A/2.

The midpoint method is illustrated schematically in Fig. 8.4. The determination of the midpoint with
Euler’s explicit method using y,, = v, + f (x,, y,)h/2 is shown in Fig. 8.4(a). Figure 8.4(b) shows the estimated
slope that is computed with the equation

dy
—_— = Xp> Vi
dx X=X, f( Y )

Figure 8.4(c) shows the value of y,,; obtained using

Yn+1 = Yn +f(xm’ ym)h



288 // Numerical Methods //
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The local truncation error in the Runge-Kutta method of order two is O(h%), and the global truncation error
is O(h?). Note that this is smaller by a factor of & than the truncation errors in Euler’s explicit method. In
other words, for the same accuracy, a larger step size can be used. However, in each step, the function
f(x, y) in the Runge-Kutta method of order two is computed twice.

Example E8.15

d
Use the second-order Runge-Kutta method with & = 0.1, find y, and y, for d_i =-x% y(2) = 1.
Solution:

For f (x, y) = — xy?, the modified Euler’s method, Eq.(8.40) is
Vel = Y — 0.1(x, + 0.05)[y, + 0.05f,]2,

where fo=—x, )’2'
n=0:
Here  xp=2and yy = 1, hence fy = -2(1)2 = -2
y; = 1-0.12 +0.05)[1 + 0.05(-2)]?> = 0.83395
n=1:
Now  x; =2.1andy, =0.83395; hence f; = —x; y> = —1.46049
Hence, 1y, =0.83395 —0.1(2.1 + 0.05)[0.83395 + 0.05 (-1.46049)]> = 0.70946

Relative error when n = 0 is

E(0.1) = 0.8299 — 0.83395 — 0.00405
and E5(0.1) = 0.7042 — 0.70946 — 0.00526
Comparing these values (y; and y,) with the exact values obtained in Table E8.1, we see that the second-
order Runge-Kutta method do indeed give accuracy comparable to the second-order Taylor’s series method
without requiring partial derivatives.
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Example E8.16
d .
Use Runge-Kutta method of order two to integrate d—i =sm y with y(0) = 1 from x = 0 to 0.5 in steps of

h = 0.1. Keep four decimal places in the calculations.

Solution:
Here glx,y) =siny
Hence, the integration formulae in Eqs.(8.41) to (8.42) are
K, =hg(x,y)=0.1siny
h 1 K
K, =hf| x+—, +—K) :0.1sin( +—lj
2 =hf ( > y 5 y >
Yy +h) = yx) + Ky
Given that y(0) = 1, we can carry out the integration as follows:
K, = 0.1 sin(1) = 0.0841

0.0841

K, =O.lsin(1+ )=0.0863

¥0.1) = 1 +0.0863 = 1.0863
K, = 0.1 sin(1.0863) = 0.0885

0.0885

K, = 0.lsin(1.0863+ j =0.0905

¥(0.2) = 1.0863 + 0.0905 = 1.1768

and so on.

The computations are summarised in Table E8.16 to four decimal places.

Table E8.16
X y K, K
0 1 0.0841 | 0.0863

0.1 | 1.0863 | 0.0885 | 0.0905
0.2 | 1.1768 | 0.0925 | 0.0940
0.3 | 1.2708 | 0.0955 | 0.0968
0.4 | 1.3676 | 0.0979 | 0.0988
0.5 | 1.4664

8.3.3.2 Runge-Kutta Method of Order Four

In the classical Runge-Kutta method of order four, the derivatives are evaluated at four points, once at each
end and twice at the interval midpoint as given below:
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where

and

h
Y 41) = y(x,) + s (K + 2K, + 2K3 + Ky)

Kl = g[xm yn(xn)]

h 1
Ky=g|x,+—, y(x,)+=Kh
2 g|:n > y(x,) 5 1}

h 1
K3 =g|:'xn+5» y('xn)+EK2h:|

K4 = g[xn + h7 y(xn) + K3h]

(843)

844)

The classical Runge-Kutta method of order four is illustrated schematically in Fig. 8.5, Figs. 8.5(a) to (c)
show the determination of the slopes in Eq. (8.4). Figure 8.5(a) shows the slope K; and how it is used to
compute slope K,. Figure 8.5(b) shows how slope K; is used to find the slope Kj. Figure 8.5(c) shows how
slope Kj is used to find the slope K;. Figure 8.5(d) shows the application of Eq. (8.43) where the slope used

for evaluating y, ,; is a weighted average of the slopes K, K;, K3 and Kj.

\7

7

s T\Exact

solution

Exact
solution

7%

umerical
solution
Exact
solution

Fig. 8.5: The classical fourth-order Runge-Kutta method

The local truncation error in the classical Runge-Kutta method of order four is O(h%), and the global truncation
error is O(h*). This method gives the most accurate solution compared to the other methods. Equation (8.44)
is the most accurate formula available without extending outside the interval [x,, x,, ,].
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Equations (8.43) and (8.44) can also be written as

1
Ynat = Ynt [K) + 2K, + 2K3 + K4] (8.44a)
where Ky = hf (Xp, Yno)
h h
K, =hf| x, +—, +—)
2 f( n ) Yn B
h K
K =hf| v + 2, +_2j
3 f( n > Yn 2
and Ky = hf (o, + By v, +Ky) (8.44b)

Example E8.17

Use the Runge-Kutta method of order four with 2 = 0.1 to obtain an approximation to y(1.5) for the solution

d >
of d—y = 2xy, y(1) = 1. The exact solution is given by y = e* . Determine the relative error and the percentage
X
relative error.

Solution:
For n = 0, from Eq. (8.44), we have

Ky = glxo, yo) = 2x9 yo = 2

1 1 1 1
K, = g[xo +20.0, 3 +E(0.1)(2)} = 2[% +5(0.1)}[y0 +5(0.2)} =231

K;=g [xo +%(0.1), Yo +%(0.1)2.31} = 2[x0 +%(0. 1)}[ Yo + %(0.23 1)} =2.3426
Ky = glxo + 0.1, yo + 0.1(2.3426) = 2(xy + 0.1)(yp + 0.2343) = 2.7154

h 0.1
Hence Y= Yo +E[Kl +2K, +2K;+ K, 1= 1+?[2+ 2(2.31)+2(2.3426) + 2.7154] =1.2337
Table E8.17 summarises the computations. In Table E8.17, exact value is computed from y = &l
The absolute error = exact value minus the value from the Runge-Kutta method. Percentage relative
error = lerrorl/exact value.

Table E8.17
n| X, Y Exact | Absolute | Percentage
value error relative error
0]1 1 1 0 0
1] 1.1 12337 |1.2337|0 0
21 1.2]1.5527 | 15527 | 0 0
31 1.31]1.9937|1.9937 |0 0
4114126116 | 2.6117 | 0.0001 0
51 1.5]3.4902 | 3.4904 | 0.0001 0
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Example ES8.18

d
Use the Runge-Kutta method of order four with 2 = 0.1 on (2, 3) for the initial problem d_)t}= - xy?,

¥(2) = 1. Compute the results obtained with the exact solution y(x)= Z 5 .
Solution:
Starting with 7y = 2, y, = 1, Eq. (8.44) gives
Ki=f20,)=-2)(1)==2
K, = £(2.05, 1 +0.05 (<2)) = — (2.05)(0.9)* = -1.6605
K5 = £(2.05, 1 +0.05 (-1.6605)) = — (2.05)(0.916975)? = —1.72373
K4 =f(2.1,1+0.1 (-1.72373)) = — (2.1)(0.82763)*> = —1.43843

0.1
1= Yo "6 {2 +2(1.6605 + 1.72373) + 1.43843} = 0.829885

Table E8.18 shows both the Runge-Kutta method of order 4 values and the exact values of y(2.0), y(2.1), ...,

¥(3.0) rounded to six decimal places. The exact values in Table E8.18, y, were computed from y(x) = — 5
2 -

Table E8.18

Xn Ya y(Xn)

2.0 | 1.000000 | 1.000000
2.1 | 0.829885 | 0.829876
2.2 | 0.704237 | 0.704225
2.3 |1 0.607914 | 0.607903
2.4 1 0.531924 | 0.531915
2.5 | 0.470596 | 0.470588
2.6 | 0.420175 | 0.420168
2.7 | 0.378078 | 0.378072
2.8 | 0.342471 | 0.342466
2.9 1 0.312017 | 0.312012
3.0 | 0.285718 | 0.285714

The reasons for the popularity of Runge-Kutta method of order 4 are evident from Table E8.18. Clearly the
method is more accurate. However, four slope values must be computed at each step. This is a short coming
of the method.

Example E8.19

Using the Runge-Kutta method of order four and with 7 = 0.2 to obtain an approximate solution of

d
2 —-21?,y(0) = 1, in the initial 0 < 7 < 1 with & = 0.2. The exact value of y is given by y = n L. Compute

dt Ay
the relative error and the percentage relative error.
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Solution:

Here K, =-2t, y,f
K, =-2(,+0.1), (y, + 0.1 K})?
K; = -2(t,+0.1), (v, + 0.1K,)?
Ky = = 2(t4)) 0y + 0.2K3)

For n=0:

K =0,K,=-02, K;=—0.192 and K, = — 0.37.
0.2
Therefore, 3 =1-=212002)+2(0.192)+0371= 09615,

Table E 8.19 gives the summary of the calculations. In the Table E8.19, the exact values are calculated using

The absolute error = exact value minus the value from the Runge-Kutta method. Percentage

y = 2"
1+¢
relative error = lerrorl/exact value.
Table E8.19
n| X, Yn Exact | Absolute | Percentage
value error relative error
00 1.0 1.0 0 0
110.2]0.9615 | 0.9615 0 0
2104 0.8621 | 0.8621 0 0
310.6|0.7353 | 0.7353 0 0
4 10.8|0.6098 | 0.6098 0 0
5[110]0.5 0.5 0 0
Example E8.20
d
Find an approximate solution to the initial value problem 7); =1-1+4y, y(0) =1, in the initial 0 <¢<1 using
-9 1 19
Runge-Kutta method of order four with 42 = 0.1. Compute the exact value given by y = 6 + Zt +Ee4’,

Compute the absolute error and the percentage relative error.

Solution:

For n = 0, from Eq.(8.44), we have
Ky =[x y0) =5
K, =f(0+0.051+025)=595
Kz =f(0+0.05,1+02975)=6.14
Ky =f0.1,1+0614) =7.356

0.1
Hence 3 =1+ [5 4 2(5.95) + 2(6.14) +7.356] = 16089
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Table E8.20 gives a summary of all the calculations for y,, exact value, absolute error and the percentage
relative error.

Table E8.20

n | t, | Runge-Kutta | Exact | Absolute | Percentage

Y value error relative error
00 1 1
11]0.1] 1.6089 1.6090 | 0.0001 0.0062
21 0.2 25050 2.5053 | 0.0002 0.0119
31031 3.8294 3.8301 | 0.0007 0.07
4104 57928 5.7942 | 0.0014 0.14
510.5] 8.7093 8.7120 | 0.0027 0.27

The superiority of the Runge-Kutta method of order four is clearly demonstrated in this Table E8.20 in
comparison with the Euler’s method [Table E8.9].

Example ES8.21

d
Use the Runge-Kutta method of order four and with /2 = 0.1 to find an approximate solution of d_y =x+y
by

at x = 0.1, 0.2 and 0.4. Given that y = —1 when x = 0.

Solution:

Equation (8.44) can be written as
K, = g(xp, yo)h = [0 - 1]0.1 =—-0.1

K,=¢ [ ,y0+ Kl}h_[(OOS)Z—IOSOl —-0.1047

h 1
Ky = g{ 2 — Yot 5 KQ} =[(0.05)* - 1.0524]0.1 =-0.1050
Ky = glxo + h, yo + K31 h = [(0.1)? - 1.105]0.1 = — 0.1095

1 1
Let Ay = 1K, + 2K, + 2K, + K] = (2014 2(-0.1047) + 2(-0.1050) + (~0.1095)] = ~0.1048

Hence  y; =y + Ay, =-1.1048

For the second increment, we have

=-0.1095, K> =—0.1137, K3 = — 0.1139 and K, = — 0.1179
Ay, =—-0.1138

Therefore y, =y; + Ay, =—-1.2186
For the third increment, we have
K, =-0.1179, K, =-0.1215, K5 =—-0.1217 and K4 = —0.1250
and Ay; = -0.1215
Hence y3 =y + Ay, = -1.3401.
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Example ES8.22

Repeat Example E8.10 using the Runge-Kutta method of order four. Use /& = 1.
Solution:

Here f,y) =y/R2

From Eq. (8.44b), we have

N | —

1
Kl = hf(-x()’ yO) = 1f(0’ 1) = 1(5) B

5
4 5
K2:hf(x0+§’ y0+ﬁ):1f(l i):i:_

2 274 8
21
h K 1 21 16 21
Y U AR IR | I
3f(x‘)zy"z 216" 72 "=
53

53) 32 53

Ky=h +h, yo+K3)=1 1,—|= =

4= hf (x Yo + K3) f( 32j > "

From Eq.(8.44a), we have

1
y=y(1) =y + E[K1+2K2+2K3+K4]
171 5 21 53
D=14+—| —|+2| = |+2| — |[+—=1.6484
() 6(2) (8) (32J 64

y(1) = e¥2 = e12 = 1.6487

The exact value

8.3.4 Predictor-Corrector Methods

Predictor-corrector methods refer to a family of schemes for solving ordinary differential equations using
two formulae: predictor and corrector formulae. In predictor-corrector methods, four prior values are required
to find the value of y at x,,. Predictor-corrector methods have the advantage of giving an estimate of error
from successive approximations to y,. The predictor is an explicit formula and is used first to determine an
estimate of the solution y, ,;. The value y, ,; is calculated from the known solution at the previous point
(x5 y,) using single-step method or several previous points (multi-step methods). If x, and x,, ,; are two
consecutive mesh points such that x,, ,; = x,, + &, then in Euler’s method we have

Yn+1=y)1+hf(x0+”ha)’n), n=0’ 1’29 37 (845)

Once an estimate of y,,; is found, the corrector is applied. The corrector uses the estimated value of y,,; on

the right-hand side of an otherwise implicit formula for computing a new, more accurate value for y,,; on the
left-hand side.

The modified Euler’s method gives as

h
Y1 = Y +§[f(xn’yn)+f(xn+l7yn+l) (8.46)
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The value of y, , is first estimated by Eq.(8.45) and then utilised in the right-hand side of Eq.(8.46) resulting
in a better approximation of y,,;. The value of y, ,; thus obtained is again substituted in Eq.(8.46) to find a
still better approximation of y,.;. This procedure is repeated until two consecutive iterated values of y, ,; are
very close. Here, the corrector equation (8.46) which is an implicit equation is being used in an explicit
manner since no solution of a non-linear equation is required.

In addition, the application of corrector can be repeated several times such that the new value of y,,
is substituted back on the right-hand side of the corrector formula to obtain a more refined value for y,;.
The technique of refining an initially crude estimate of y,,; by means of a more accurate formula is known
as predictor-corrector method. Equation (8.45) is called the predictor and Eq. (8.46) is called the corrector
of y, +1. In what follows, we describe two such predictor-corrector methods:

1.  Adams-Moulton method.

2. Milne’s predictor-corrector method.

8.3.4.1 Adams-Moulton Predictor-Corrector Method

The Adams-Moulton method is an implicit multi-step method for solving first-order ordinary differential
equations. There are several versions of Adams-Moulton formulas available for computing the value of y, ,;
by using the previously obtained solution at two or more points. These formulas are classified based on
their order, that is, based on the number of points used in the formula and the order of the global truncation
error. For instance, in the second-order formula, two points (x,, y,) and (x,.1, ¥,+1) are used. In the third-
order formula, three points (x,, y,), (X,_1, ¥,—1) and (x,_», y,») are used and so on.

Consider the differential equation

d
d—y = f(x.y), Y(50) = o (847)
X

Integrating Eq. (8.47), we obtain

y=Yyo t+ f S (x, y)dx (848)
or Y= Yo +": f(x,y)dx, Xg Sx<Xx (8.49)
Applying the Newton’s backward difference formula, we have

nn+1)

nn+1)(n+2) e

S, y)=fo+nVfy+ V2 fy + Jo+- (8.50)

h
Now, substituting f (x, ¥) from Eq.(8.50) into the right-hand side of Eq.(8.49), we obtain

X0

where n= and fo=f (xo, yo)

x‘ nn+1
y.=yoj {fl+ano+ “ )V2f0+---}dx
1 n(n+1)
ylzy0+h.‘.0{f0+anO+ V2f0+--}dx
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5

1 2 3
= +h|1+—V+—V"+
or Y=Y |: 2 12

3, 251
gV 720 “1fo 8.51)

We note here that the right hand side of Eq.(8.51) depends on yg, y_i, ¥_, ... all of which are known.

Hence, we can write Eq.(8.51) as

1 5 3 251,
P =y +h|1+=V+—=V?+ 2V’ ¢
Y= Yo { ST g 720 }fo (8.52)

Equation (8.52) is called the Adams-Bashforth formula and is used as a predictor formula.

A corrector formula is derived by applying the Newton’s backward difference formula at f;. Therefore,

F(6y) = f+nVf, + n(n2+ 1) V2 £+ n(n+ lé(n+ 2) V3fl o 853)

Now, substituting f (x, ¥) from Eq.(8.53) into the right-hand side of Eq.(8.49), we obtain

y1=y0+fjl[fl+anl n(n ”)v fi+ }dx—y0+h'|. [fl+an1 2+1)V2f1+..}dx
0
lg 1o 1os 19
= Yo +h|1-=V-—V? - —V?
or Y=Y { ST 7’ "7’ :|fl (8.54)

Equation (8.54) shows that the right-hand side depends on y;, yo, y_1, Y3, ..., wWhere ylf’ is used for y;. Hence,
the new value of y; is given by
1-5_, 3_53 251_4
=y,+h|l-——V° ==V ——V
W= [ > 12 3 70 K (8.55)
AP = Ay

the formula, Eq.(8.55) is called the Adams-Moulton corrector formula. Now expressing the remaining difference
operators in their functional values and neglecting the fourth and higher order differences, Eqs.(8.51) and
(8.55) become respectively,

h
W=+ 241950 =59/ 43715 =93] (8.56)

h
and o=y + SO +190 =511 =91] 8.57)

Equation (8.57), known as the corrector formula is repeatedly applied by computing an improved value of f
at each stage, to obtain a better value of y; unless it becomes stable and remains unchanged and then we
proceed to calculate y;.

251

The approximate errors in Eqs.(8.56) and (8.57) are = p° £V and — h S fi9 respectively.
720 720
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It should be noted here that in order to apply Adams-Moulton method, we require four starting values
of y, which can be obtained by using Picard’s method of successive approximation or Taylor series method
or Euler’s method or Runge-Kutta methods.

Summarising, the Adams-Bashforth and Adam-Moulton formulae are given by

yn+l yn 24 [szn —59‘]('",1 + 37fn72 _9fn73] (858)

and yn+1 [9fn+l + 19f anfl + fn72] (859)

respectively. The local error estimates for Eqs.(8.58) and (8.59) are

251 5, 19 5,
—h d —n X
Y @) and Sy (6 (8.60)

Let y2+1 represent the value of y,,; found using Eq.(8.58) and y111+1 the solution obtained with one application

of Egs.(8.58) and (8.59). If y(x,,,) represents the exact value of y at x,,,; and the values of f are assumed to
be exact at all points including x,, then from Eq.(8.60), we obtain the order estimates

251

V(X)) = Yoy = 720/15 ¥ 8.61)
19 5,
Y(X1) = Va1 = 0 — 1’y (&) 8.62)

which leads to the estimate of y”, based on the assumption that the over the interval of interest y"(x) is
approximately constant, as

5o 120
" 270

|:yn+1 )’2+1 ]

Hence, from Eq. (8.62), we obtain

o yllﬁ-l y;(1)+1:| _1|:yn+l y2+1:|=Dn+1 (8.63)

Y(Xyi1) — )’n+1 720[ 14

Hence, the error of the corrected value is approximately —1/14 of the difference between the corrected and
the predicted values.

Example E8.23

d
Use the Adams-Moulton method on (2, 3) with 2 = 0.1 for the initial value problem d_z =-xy%,y(2) = 1.

Exact solution is y(x) = 5 .
x =2

Solution:

We will try to obtain about four significant digits. To start the method, we use the following exact values to
seven significant digits.
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xp = 2.0: yo= y(2.0) = 1.0; fo= —xo¥¢ =20

X1 =21 y= y2.1) = 1.8298755; fi = —x; y2 = —1.446256
Xy =22: 3= y(22) = 07042254, f, = —x, y2 = —1.091053
X3 =23 y3= y(23) = 0.6079027; f; = x3y> = —0.8499552

n=3 W=y, +2L:|:55f3 -59f,+37f,-9f, [=05333741

c h 2
= +24H—x4( ) 19,5+ ﬁH:O.5317149

The local truncation error estimate is from Eq. (8.62),

1 —19 C P _19
- =— - =——0.5317149 -0.5333741|=0.0001144
Y(Xpi1) = Yt 720 [)’4 V4 } 720[ ]

Since the local truncation error estimate indicates possible inaccuracy in the 4" decimal place (4 significant

digit) of )’4C , we take yf as an improved yj to get an improved as follows:

h
yf =3 +ﬂ[9[—x4(0.5117149)2]+19f3 =5f, + fl] =0.5318739
The local truncation error estimate of this yf is

-19
720 [0.5318739 — 0.5317149] = -0.0000112

indicating that y4c should be accurate to about 5 significant digits.
n=4 Ja=1 (x4 y4) =— (2.4)(0.5318739)% = — 0.6789358

h
=y, + 1550, =59/, +37, =91 = 04712642

h
y$ =y, +£[—9(—x5y5”)2 +19f, =5f, + f,1= 0.4704654

-19
The local truncation error estimate is %[ysc -y! } = 0.0000562. As before, this estimate indicates possible

inaccuracy in the 4% significant digit of ys. Hence, we get an improved ys as

¥§ =y, + %[—9(—)@ (0.4704654)*1+19f, =5 f; + f»1= 0.4705358

The local truncation error estimate for this y_c)c is

-19
%[0.4705358 —-0.4704654] = —0.0000050
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indicating this ysc should be accurate to about 5 significant digits.

Table E8.23 summarises the computations and comparison with the exact solution y(x,) and the relative error
E,(h).

d
Table E8.23: Adams-Moulton method value for d_y =—xy? y(2) =1 with h = 0.1
X

Using Adams-Moulton method

Xn Exact y(x,) o E.(h)
Xo= 2.0 | 1.000000 Exact —
2.1 | 0.829876 Exact —
2.2 | 0.704225 Exact —
2.3 | 0.607903 Exact —

2.4 | 0.531915 0.531874 0.000041

2.5 | 0.470588 0.470536 0.000052

2.6 | 0.420168 0.420114 0.000054

2.7 | 0.378072 0.378020 0.000052

2.8 | 0.342466 0.342419 0.000047

2.9 | 0.312012 0.311971 0.000041

xg= 3.0 | 0.285714 0.285674 0.000040

Example E8.24
dy

Approximate the y value at x = 0.4 of the following differential equation
Adams-Moulton method.

o 0.5y, y(0) = 1.0 using the

Solution:

The predicted value at x = 0.4 is given by Eq. (8.58)

h
Ynr1 = Y T 3 =30 1 437 fu2 =93]

0.1
or Y4 = T g P30 =392 +371H =91 E.D)

where fy, fi and f, values are obtained from the Table E8.10. Substituting the values of f;, f; and f, from Table
E&8.10, Eq.(E.1) becomes

yP =1.1576 +%[55(0.5) ~59(0.5513) +37(0.525) —9(0.5)] = 1.1988

The corrected value is obtained by first evaluating f (x4, y4), then substituting into Eq.(8.59). That is,

Ja=F(x4,y4,p) = %(1.2213) =0.6106
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and from Eq.(8.59)

h
ﬁﬁ=n+azwﬂﬂ+wﬂ—5ﬂ4+ﬂ4]
c 0.1
Vi =3 +§[9f4 +19f3 =51, + fi1

1
=1.1576+ 2—4[9(0.6129) +19(0.5788) —5(0.5513) + 0.5250] = 1.2171

The corrected value (1.2171) is clearly more accurate than the predicted value (1.1988) when compared with
the exact value of y, = 1.2214.

8.3.4.2 Milne’s Predictor-Corrector Method

Consider the differential equation

d
2y ¥0)=0 (8.64)
dx

Integrating Eq.(8.64), we obtain
y= y0+fx f(x)dx

or Y=Y +Jj4 f(x,y)dx in the range x; < x< x, (8.65)

Applying Newton’s forward difference formula, we get

Fey) =+ nafy s WD papy o LN

Substituting Eq.(8.66) into the right-hand side of Eq.(8.65), we get

Ay + - (8.66)

Ya = Yo +J [fo +nAf, + ”(”2_ D A%, +--1dx
N nn-1) ,
=Yo+h| |fotnhf,+ A" fo 4+ |dn (8.67)
20 8
or y:yl+h[4f0+8Af0+?Azf0+§A3fo+--}

Neglecting the fourth and higher order differences and expressing the differences Afy, A%, and A3f; in terms
of the functional values, we get

4
Y=Y+ gh[2f1 - fa+2f3] (8.68)
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Equation (8.68) can be used to predict the value of y, when those of yy, y;, ¥, and y; are known. Once we
obtain y,, we can then find a first approximation to

Ja=f(xo + 4h, y4)
A better values of y, can then be obtained by applying Simpson’s rule as
h
Y4 =2 +E[f2 +4f5+ f4l (8.69)

Equation (8.64) called a corrector. An improved value of f; is calculated and again the corrector is applied
to obtain a still better value of y,. The procedure is repeated until y, remains unchanged. After obtaining y,
and f; to a desired degree of accuracy, then ys = (xo + 5h) is obtained from the predicted as

4
Vs =9 +§h[2fz —L+2f]

and S5 =flxo + 5h, ys]

is computed.

A better approximation to the value of ys is then obtained from the corrector as

h
Y5 =3 +§[f3 +4f,+ f5]

This step is repeated until y5 becomes stable and then we proceed to compute yq as before. This procedure
is known as Milne's predictor-corrector method. The accuracy of the method is improved if we must improve
the starting values and then sub-divide the intervals.

Summarising, the predictor and corrector formulae are given by

) 4h
Vel = Ypoz + 3 RS faa 420000 (8.70)
C h p
and Yutl = Y1 g[ wrt T4 0+ fuc] 8.71)

The corresponding error estimates for Eqs.(8.70) and (8.71) are given by

P — 5. v

e —29h vy (&) (8.72)
P — _ihS v

en="55""" (29) (8.73)

The local error estimate can be shown to be

-1

Dy =g vt =0 ] (874)

It should be noted here that Eq.(8.71) can be subjected to numerical instability in some cases.
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Example E8.25
Approximate the y value at x = 0.4 of the differential equation dy = %y , ¥(0) = 1.0 using the Milne predictor-
corrector method.

Solution:

The predicted y value at x = 4 and n = 3 is given by Eq. (8.70). Hence

4h
yrfﬂ = Yn-3 +?[2fn _fn—l +2fn—2]

4(0.1
or Vi = yo+%[2f<x1,yl>—f<xz,yz>+2f<x3,y3>]

Here, we use the past values given in Example E8.10.

4
v =1+ 07[2(0.5250) ~0.5513+2(0.5788)] = 1.2259

The derivative at x = 0.4 can be approximated by using the predicted value to obtain

dy Lo,
—| = JV4) =— =0.6129
drl,, VACTR Y 2()’4)

Hence, the corrected y, is obtained using Eq.(8.71)

h
yrirl = Yn-1 +§[ nﬁl +4fn +fnfl]

0.1
or Y5 =y, 1 G 3) A4S (i 3)+ f (40 30) ]

1
=1.1025+ %[0.5513+ 4(0.5788)+0.6129] =1.2185

The predicted value 1.2259 is noted to be closer to the exact value of 1.2214 than the corrected value.

84 SUMMARY

Differential equations arise in scientific and engineering applications when a dependent variable y varies
with the independent variable either time ¢ or position x. In this chapter, the numerical techniques commonly
used for solving ordinary differential equations are presented. There are two categories of methods to solve
ordinary differential equations: one-step methods and multi-step methods. In one-step methods, the value of
the increment function is based on information at a single point ‘i’. The class of methods called multi-step
methods use information from several previous points as the basis for extrapolating to a new value.

Among the one-step methods or single-step methods, Picard’s method of successive approximation
method and Taylor’s series method were presented. Among the step-by-step methods or the marching
methods, Euler’s method, modified Euler’s method, Runge-Kutta methods of order two and four, Adam-
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Moulton predictor-corrector method and Milne’s predictor-corrector method are presented. These methods
have been illustrated with example problems and solution.

Problems

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

8.10

8.11

8.12

d
Use Picard’s method of successive approximation to solve the equation d_y =1+xy,y0) =1 at
by

x=0.1.

d
Solve d_y = x + y with the initial condition xy = 0, yy = 1 using the Picard’s method of successive
by

approximation.

Use Picard’s method of successive approximation to find y(0.2) correct to five decimal place by solving

dy .

—=x-y, withy(0)=1.

dx

Use Picard’s method of successive approximation to tabulate the values of y(0.1), ¥(0.2), ...., y(1.0)

d
and form the solution of d_y = x(1 + x%y), y(0) = 3.
Ix

d
Use Picard’s method of successive approximation to find y(0.1) from the equation 2o

y(0)=1.

d
Use Picard’s method of successive approximation to find y(0.2) by solving the equation d_y =x+y?
by

with y(0) = 0.

Using Taylor’s series method for y(x), find y(0.1) correct to four decimal places from the initial value
problem y" = xy + 1, y(0) = 1.

d
Find the values of y(1.1) and y(1.2) correct to three decimal places given that d_y = xy!3, y(1) = x(1)
b4

= 1 using the first three terms of the Taylor’s series expansions.

d
Find the value of y at x = 0.1 and x = 0.2 using the Taylor’s series method from d_y =x*y—1,y(0) =1
by

accurate to five decimal places.

Given that y! + 4y = x2, y(0) = 1. Determine y(0.2) with the fourth-order Taylor’s series method using
a single integration step.
Using Taylor’s series method for y(x) given that y! = y> — x, y(0) = 1, find y(0.1) and y(0.3) correct to
four decimal places.

d 1
Use Taylor’s series method to solve the differential equation d_y = y(4) = 4 to find y(4) and
X

2 9
v(4.2).

X" +y
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8.13

8.14

8.15

8.16

8.17

8.18

8.19

8.20
8.21

8.22

8.23

8.24

8.25

8.26

d
Use Euler’s method to find y(1) from the differential equation d_z =x+y,y0)=1.

d
Use Euler’s method to solve d—y =-1.2y + 7¢7%3% from x = 0 to x = 2 with the initial condition y = 3
X

at x = 0. Take h = 0.5.

d
Solve using Euler’s method to solve d_z =x+y% y(1)=0atx=1.3 with 2 = 0.5 and at x = 1.175 with

h =0.025.

d
Solve the following differential equation using Euler’s method for x = 0 to 0.4. d_z =3y +2yt=1
with y(0) = 1. Take step size h = 0.1.

Use Euler’s method to approximate the solution of the following initial value problem.

dy .
I te3' -2y, 0<t<1, y(0) =0, with h = 0.5.

d
Solve d_z =x*(1 +y) with y(1) = 1 to find y(1.1) by using Euler’s method and taking & = 0.025.
Use modified Euler’s method to find an approximate value of y when x = 0.3. Given that

d
—y:x+y,y(0):1.
dx

Repeat Problem P8.14 using the modified Euler’s method.
Use modified Euler’s method to find the value of y at x = 0.1, given that y(0) = 1 and y! = x> + y.

d
Using modified Euler’s method to find the value of y(2) in steps of 0.1, given thatd—y =2+./xy,
x
y() =L
d
Solve d_y =,/(xy+1) with y(0) = 1 for finding y(0.075) by using modified Euler’s method taking
X

h =0.025.
Use the modified Euler’s method to approximate the solution to the following initial value problem.

dy .
d—:1+(t—y)2,23ts3,y(2)=1,W1thh=0.5.
by

d
Find y(0.1), ¥(0.2), y(0.3) and y(0.4) correct to four decimal places given that d_y =y—x, y(0) = 2. Take
X

h = 0.1 and use second-order Runge-Kutta method.

d
Use second-order Runge-Kutta method to solve the equation d_y =siny, y(0) =1 fromx=0to 0.5
by

in steps of & = 0.1. Keep four decimal places in the computations.
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8.27

8.28

8.29

8.30

8.31

8.32

8.33

8.34

8.35

8.36

8.37

8.38

8.39

d
Use the second-order Runge-Kutta method to solve the equation d_)t} = -y+1; 0<t<0.5. With

¥(0) =1 and & = 0.1. Keep five decimal places in the computations.

Using Runge-Kutta method of order 2, find y for x = 0.1, given that y = 1 when x = 0 and

d
d_y =x+y. Use h = 0.1 and keep five decimal places in the computations.
by

d
Use the second-order Runge-Kutta method to solve the equation d_y =y—x, y(0) =2 and find y(0.1)
by
correct to four decimal places with & = 0.1 and keep four decimal places.

Solve dy _ (+xy)
dx  (x+y)

Use the classical Runge-Kutta method of fourth-order to find the numerical solution at x = 0.8 for

, ¥(1) = 1.2 by Runge-Kutta method of order 2. Take # = 0.1 for y(1.2).

d
d_y =xty,y=(04)=0.41. Assume a step length of & = 0.2.
X

Use the Runge-Kutta fourth-order method to find the value of y when x = 1 given that

d -Xx
D222 y0=1
dx y+x

2_ 2
Use the Runge-Kutta fourth-order method to solve the equation % = %With y(0) =1 at
y +x

x =02, 04. Take h = 0.2.

d
Use the classical fourth-order Runge-Kutta method to solve d_y =—12y +7e ¥ fromx=0tox= 1.5
by

with the initial condition y = 3 at x = 0. Take 2 = 0.5.

Use the classical fourth-order Runge-Kutta method to integrate f(x, y) = —=2x> + 12x2 — 20x + 8.5 using
a step size of 4 = 0.5 and an initial condition of y = 1 at x = 0. Compute y(0.5).

d
Use the Runge-Kutta fourth-order method to find y(0.2), y(0.4) and y (0.6) given that d_z =1+y%
¥(0) = 0 and take 2 = 0.2.

d
Use the Adams-Moulton method to solve the differential equation d—y =x2-y+1,0<x<1 with
x

¥(0) = 1. Use h = 0.1 and find the solution of y(0.2) accurate to 6 digits.

d
Use the Adams-Moulton method to solve the differential equation d_z =x -2 y(0) =1 to find y(0.4).
Given that y(0.1) = 0.9117, y(0.2) = 0.8494 and y(0.3) = 0.8061.

d
Use Adams-Moulton method to find y(0.8) given that d_i =1+y2 y(0)=0.
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8.40

8.41

8.42

8.43

8.44

8.45

8.46

8.47

8.48

d
Use Adams-Moulton method to solve the differential equation d_y =x2-y+1,0<x<1 with
by
¥(0) = 1. Find y(0.4) given that y(0.1) = 1.0003, ¥(0.2) = 1.00243 and y(0.3) = 1.00825.

d
Use Adams-Moulton method to find y(1.4) given that d_y =x%(1 + y) and that y(1) = 1, y(1.1) = 1.233,
x
¥(1.2) = 1.543 and y(1.3) = 1.979.

Use the Adams-Moulton method to approximate the solution to the following initial value problem.
Use the exact starting values.

b ) -
p =1+(@-y52<t<3,y2)=1,withh=0.2.
x

1
Actual solution is y(¢) =¢ +: .
. . . . . dy .
Use Milne’s predictor-corrector method to find y(0.8) taking & = 0.2. Given that o y + x? with
by

d
Use Milne’s predictor-corrector method to solve d_y = x + y, with the initial condition y(0) = 1, from
by
x=02tox=0.3.

d
Use Milne’s method to compute the solution at x = 0.4 given that d_y =xy +y% y(0) = 1. Take h = 0.1
by

and obtain the starting values for Milne’s method using Runge-Kutta method of order 4.

d
Use Milne’s method to solve the differential equation for x = 0.4 and x = 0.5 given that d_y =x-y+1,
X
0<x<1and y0)= 1. Given y(0.1) = 1, ¥(0.2) = 1.0024 and y(0.3) = 1.0083.

d
Use Milne’s method to find y(0.8) and y(1.0) given that d_z =1+y2% y(0) = 0 and y(0.2) = 0.2027,
¥(0.4) = 0.4228 and y(0.6) = 0.6841. Take i = 0.2.

d
Solve d_y = —y with y(0) = 1 by using Milne’s predictor-corrector method for x = 0.5 to 0.7 with
by

h=0.1.

ONONO)



	Contents
	Chapter 1 - Numerical Computations
	1.1 Taylor's Theorem
	1.2 Number Representation
	1.3 Error Considerations
	1.3.1 Absolute and Relative Errors
	1.3.2 Inherent Errors
	1.3.3 Round-off Errors
	1.3.4 Truncation Errors
	1.3.5 Machine Epsilon
	1.3.6 Error Propagation

	1.4 Error Estimation
	1.5 General Error Formula
	1.5.1 Function Approximation
	1.5.2 Stability and Condition
	1.5.3 Uncertainty in Data or Noise

	1.6 Sequences
	1.6.1 Linear Convergence
	1.6.2 Quadratic Convergence
	1.6.3 Aitken’s Acceleration Formula

	1.7 Summary
	Problems

	Chapter 2 - Linear System of Equations
	2.1 Introduction
	2.2 Methods of Solution
	2.3 The Inverse of a Matrix
	2.4 Matrix Inversion Method
	2.4.1 Augmented Matrix

	2.5 Gauss Elimination Method
	2.6 Gauss-Jordan Method
	2.7 Cholesky's Triangularisation Method
	2.8 Crout's Method
	2.9 Thomas Algorithm for Tridiagonal System

	2.10 Jacobi's Iteration Method
	2.11 Gauss-Seidal Iteration Method
	2.12 Summary
	Problems

	Chapter 3 -  Solution of Algebraic and Transcendental Equations
	3.1 Introduction
	3.2 Bisection Method
	3.2.1 Error Bounds


	3.3 Method of False Position
	3.4 Newton-Raphson Method
	3.4.1 Convergence of Newton-Raphson Method
	3.4.2 Rate of Convergence of Newton-Raphson Method
	3.4.3 Modified Newton-Raphson Method
	3.4.4 Rate of Convergence of Modified Newton-Raphson Method

	3.5 Successive Approximation Method
	3.5.1 Error Estimate in the Successive Approximation Method

	3.6 Secant Method
	3.6.1 Convergence of the Secant Method

	3.7 Muller's Method
	3.8 Chebyshev Method
	3.9 Aitken's &#916;2 Method
	3.10 Comparison of Iterative Methods
	3.11 Summary
	Problems

	Chapter 4 - Numerical Differentiation
	4.1 Introduction
	4.2 Derivatives Based on Newton's Forward Interpolation Formula
	4.3 Derivatives based on Newton's Backward Interpolation Formula
	4.4 Derivatives based on Stirling's Interpolation Formula
	4.5 Maxima and Minima of a Tabulated Function
	4.6 Cubic Spline Method
	4.7 Summary

	Chapter 5 -  Finite Differences and Interpolation
	5.1 Introduction
	5.2 Finite Difference Operators
	5.2.1 Forward Differences
	5.2.2 Backward Differences
	5.2.3 Central Differences
	5.2.4 Error Propagation in a Difference Table
	5.2.5 Properties of the Operator &#916;
	5.2.6 Difference Operators
	5.2.7 Relation between the Operators
	5.2.8 Representation of a Polynomial using Factorial Notation

	5.3 Interpolation with Equal Intervals
	5.3.1 Missing Values
	5.3.2 Newton’s Binomial Expansion Formula
	5.3.3 Newton’s Forward Interpolation Formula
	5.3.4 Newton’s Backward Interpolation Formula
	5.3.5 Error in the Interpolation Formula

	5.4 Interpolation with Unequal Intervals
	5.4.1 Lagrange’s Formula for Unequal Intervals
	5.4.2 Hermite’s Interpolation Formula
	5.4.3 Inverse Interpolation
	5.4.4 Lagrange’s Formula for Inverse Interpolation

	5.5 Central Difference Interpolation Formulae
	5.5.1 Gauss’s Forward Interpolation Formula
	5.5.2 Gauss’s Backward Interpolation Formula
	5.5.3 Bessel’s Formula
	5.5.4 Stirling’s Formula
	5.5.5 Laplace-Everett’s Formula
	5.5.6 Selection of an Interpolation Formula

	5.6 Divided Differences
	5.6.1 Newton’s Divided Difference Interpolation Formula

	5.7 Cubic Spline Interpolation
	5.8 Summary
	Problems

	Chapter 6 - Curve Fitting, Regression and Correlation
	6.1 Introduction
	6.2 Linear Equation
	6.3 Curve Fitting with a Linear Equation
	6.4 Criteria for a "Best" Fit
	6.5 Linear Least-Squares Regression
	6.6 Linear Regression Analysis
	6.6.1 Matlab Functions: Polyfit and Polyval

	6.7 Interpretation of a and b
	6.8 Standard Deviation of Random Errors
	6.9 Coefficient of Determination
	6.10 Linear Correlation
	6.11 Linearisation of Non-Linear Relationships
	6.12 Polynomial Regression
	6.13 Quantification of Error of Linear Regression
	6.14 Multiple Linear Regression
	6.15 Weighted Least Squares Method
	6.16 Orthogonal Polynomials and Least Squares Approximation
	6.17 Least Squares Method for Continuous Data
	6.18 Approximation using Orthogonal Polynomials
	6.19 Gram-Schmidt Orthogonalisation Process
	6.20 Additional Example Problems and Solutions
	6.21 Summary
	Problems

	Chapter 7 - Numerical Integration
	7.1 Introduction
	7.1.1 Relative Error

	7.2 Newton-Cotes Closed Quadrature Formula
	7.3 Trapezoidal Rule
	7.3.1 Error Estimate in Trapezoidal Rule

	7.4 Simpson's 1/3 Rule
	7.4.1 Error Estimate in Simpson’s 1/3 Rule

	7.5 Simpson's 3/8 Rule
	7.6 Boole's and Weddle's Rules
	7.6.1 Boole’s Rule
	7.6.2 Weddle’s Rule

	7.7 Romberg's Integration
	7.7.1 Richardson’s Extrapolation
	7.7.2 Romberg Integration Formula

	7.8 Summary
	Problems

	Chapter 8 -  Numerical Solution of Ordinary Differential Equations
	8.1 Introduction
	8.2 One-step Methods or Single-Step Methods
	8.2.1 Picard’s Method of Successive Approximation
	8.2.2 Taylor’s Series Method

	8.3 Step-by-Step Methods or Marching Methods
	8.3.1 Euler’s Method
	8.3.2 Modified Euler’s Method
	8.3.3 Runge-Kutta Methods
	8.3.3.1 Runge-Kutta Method of Order Two
	8.3.3.2 Runge-Kutta Method of Order Four

	8.3.4 Predictor-Corrector Methods
	8.3.4.1 Adams-Moulton Predictor-Corrector Method
	8.3.4.2 Milne’s Predictor-Corrector Method


	8.4 Summary
	Problems


